Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746378

ABSTRACT

Chromatin organization controls DNA's accessibility to regulatory factors to influence gene expression. Heterochromatin, or transcriptionally silent chromatin enriched in methylated DNA and methylated histone tails, self-assembles through multivalent interactions with its associated proteins into a condensed, but dynamic state. Liquid-liquid phase separation (LLPS) of key heterochromatin regulators, such as heterochromatin protein 1 (HP1), plays an essential role in heterochromatin assembly and function. Methyl-CpG-binding protein 2 (MeCP2), the most studied member of the methyl-CpG-binding domain (MBD) family of proteins, has been recently shown to undergo LLPS in the absence and presence of methylated DNA. These studies provide a new mechanistic framework for understanding the role of methylated DNA and its readers in heterochromatin formation. However, the details of the molecular interactions by which other MBD family members undergo LLPS to mediate genome organization and transcriptional regulation are not fully understood. Here, we focus on two MBD proteins, MBD2 and MBD3, that have distinct but interdependent roles in gene regulation. Using an integrated computational and experimental approach, we uncover the homotypic and heterotypic interactions governing MBD2 and MBD3 phase separation and DNA's influence on this process. We show that despite sharing the highest sequence identity and structural homology among all the MBD protein family members, MBD2 and MBD3 exhibit differing residue patterns resulting in distinct phase separation mechanisms. Understanding the molecular underpinnings of MBD protein condensation offers insights into the higher-order, LLPS-mediated organization of heterochromatin.

2.
Elife ; 122024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592759

ABSTRACT

The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1ß, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1ß and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.


Subject(s)
Chromobox Protein Homolog 5 , Heterochromatin , Humans , Phase Separation , DNA , Cell Differentiation
3.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961422

ABSTRACT

The Polycomb Group (PcG) complex PRC1 represses transcription, forms condensates in cells, and modifies chromatin architecture. These processes are connected through the essential, polymerizing Sterile Alpha Motif (SAM) present in the PRC1 subunit Polyhomeotic (Ph). In vitro, Ph SAM drives formation of short oligomers and phase separation with DNA or chromatin in the context of a Ph truncation ("mini-Ph"). Oligomer length is controlled by the long disordered linker (L) that connects the SAM to the rest of Ph--replacing Drosophila PhL with the evolutionarily diverged human PHC3L strongly increases oligomerization. How the linker controls SAM polymerization, and how polymerization and the linker affect condensate formation are not know. We analyzed PhL and PHC3L using biochemical assays and molecular dynamics (MD) simulations. PHC3L promotes mini-Ph phase separation and makes it relatively independent of DNA. In MD simulations, basic amino acids in PHC3L form contacts with acidic amino acids in the SAM. Engineering the SAM to make analogous charge-based contacts with PhL increased polymerization and phase separation, partially recapitulating the effects of the PHC3L. Ph to PHC3 linker swaps and SAM surface mutations alter Ph condensate formation in cells, and Ph function in Drosophila imaginal discs. Thus, SAM-driven phase separation and polymerization are conserved between flies and mammals, but the underlying mechanisms have diverged through changes to the disordered linker.

4.
bioRxiv ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-37398008

ABSTRACT

The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1ß, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1ß and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.

5.
Biophys J ; 122(5): 835-848, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36721368

ABSTRACT

DNA strands have to sample numerous states to find the alignment that maximizes Watson-Crick-Franklin base pairing. This process depends strongly on sequence, which affects the stability of the native duplex as well as the prevalence of non-native inter- and intramolecular helices. We present a theory that describes DNA hybridization as a three-stage process: diffusion, registry search, and zipping. We find that non-specific binding affects each of these stages in different ways. Mis-registered intermolecular binding in the registry search stage helps DNA strands sample different alignments and accelerates the hybridization rate. Non-native intramolecular structure affects all three stages by rendering portions of the molecule inert to intermolecular association, limiting mis-registered alignments to be sampled, and impeding the zipping process. Once in-register base pairs are formed, the stability of the native structure is important to hold the molecules together long enough for non-native contacts to break.


Subject(s)
DNA , Nucleic Acid Conformation , Thermodynamics , Nucleic Acid Hybridization , Base Pairing , DNA/genetics , DNA/chemistry
6.
Nucleic Acids Res ; 50(22): 12702-12722, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36537242

ABSTRACT

Heterochromatin protein 1α (HP1α) is a crucial element of chromatin organization. It has been proposed that HP1α functions through liquid-liquid phase separation (LLPS), which allows it to compact chromatin into transcriptionally repressed heterochromatin regions. In vitro, HP1α can undergo phase separation upon phosphorylation of its N-terminus extension (NTE) and/or through interactions with DNA and chromatin. Here, we combine computational and experimental approaches to elucidate the molecular interactions that drive these processes. In phosphorylation-driven LLPS, HP1α can exchange intradimer hinge-NTE interactions with interdimer contacts, which also leads to a structural change from a compacted to an extended HP1α dimer conformation. This process can be enhanced by the presence of positively charged HP1α peptide ligands and disrupted by the addition of negatively charged or neutral peptides. In DNA-driven LLPS, both positively and negatively charged peptide ligands can perturb phase separation. Our findings demonstrate the importance of electrostatic interactions in HP1α LLPS where binding partners can modulate the overall charge of the droplets and screen or enhance hinge region interactions through specific and non-specific effects. Our study illuminates the complex molecular framework that can fine-tune the properties of HP1α and that can contribute to heterochromatin regulation and function.


Subject(s)
Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone , Heterochromatin , Chromatin , Chromobox Protein Homolog 5/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Ligands , Phosphorylation , Transcription Factors/metabolism , Humans
7.
J Chem Inf Model ; 62(18): 4474-4485, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36066390

ABSTRACT

Recent advances in residue-level coarse-grained (CG) computational models have enabled molecular-level insights into biological condensates of intrinsically disordered proteins (IDPs), shedding light on the sequence determinants of their phase separation. The existing CG models that treat protein chains as flexible molecules connected via harmonic bonds cannot populate common secondary-structure elements. Here, we present a CG dihedral angle potential between four neighboring beads centered at Cα atoms to faithfully capture the transient helical structures of IDPs. In order to parameterize and validate our new model, we propose Cα-based helix assignment rules based on dihedral angles that succeed in reproducing the atomistic helicity results of a polyalanine peptide and folded proteins. We then introduce sequence-dependent dihedral angle potential parameters (εd) and use experimentally available helical propensities of naturally occurring 20 amino acids to find their optimal values. The single-chain helical propensities from the CG simulations for commonly studied prion-like IDPs are in excellent agreement with the NMR-based α-helix fraction, demonstrating that the new HPS-SS model can accurately produce structural features of IDPs. Furthermore, this model can be easily implemented for large-scale assembly simulations due to its simplicity.


Subject(s)
Intrinsically Disordered Proteins , Prions , Amino Acids , Intrinsically Disordered Proteins/chemistry , Peptides/chemistry , Protein Structure, Secondary
8.
Biophys J ; 121(15): 2931-2939, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35778843

ABSTRACT

The formation of ß-sheet-rich amyloid fibrils in Alzheimer's disease and other neurodegenerative disorders is limited by a slow nucleation event. To understand the initial formation of ß-sheets from disordered peptides, we used all-atom simulations to parameterize a lattice model that treats each amino acid as a binary variable with ß- and non-ß-sheet states. We show that translational and conformational entropy give the nascent ß-sheet an anisotropic surface tension that can be used to describe the nucleus with 2D classical nucleation theory. Since translational entropy depends on concentration, the aspect ratio of the critical ß-sheet changes with protein concentration. Our model explains the transition from the nucleation phase to elongation as the point where the ß-sheet core becomes large enough to overcome the conformational entropy cost to straighten the terminal molecule. At this point the ß-strands in the nucleus spontaneously elongate, which results in a larger binding surface to capture new molecules. These results suggest that nucleation is relatively insensitive to sequence differences in coaggregation experiments because the nucleus only involves a small portion of the peptide.


Subject(s)
Amyloid , Peptides , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Entropy , Peptide Fragments/chemistry , Peptides/chemistry , Protein Conformation, beta-Strand
9.
Phys Rev E ; 100(4-1): 042114, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31770938

ABSTRACT

Molecular self-assembly is usually done at low supersaturation, leading to low rates of growth, in order to allow time for binding mistakes to anneal. However, such conditions can lead to prohibitively long assembly times where growth proceeds by the slow nucleation of successive layers. Here we use a lattice model of molecular self-assembly to show that growth in this regime can be sped up by impurities, which lower the free-energy cost of layer nucleation. Under certain conditions impurities behave almost as a catalyst in that they are present at high concentration at the surface of the assembling structure, but at low concentration in the bulk of the assembled structure. Extrapolation of our numerics using simple analytic arguments suggests that this mechanism can reduce growth times by orders of magnitude in parameter regimes applicable to molecular systems.

10.
Biochem Biophys Res Commun ; 477(4): 952-956, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27387232

ABSTRACT

Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/ß-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/ß-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/ß-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/ß-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/ß-catenin signaling in adult and larval zebrafish spinal cord regeneration.


Subject(s)
Spinal Cord Injuries/physiopathology , Spinal Cord Regeneration/physiology , Spinal Cord/physiopathology , Wnt Signaling Pathway , Zebrafish/physiology , beta Catenin/metabolism , Animals , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Up-Regulation , Zebrafish/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...