Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Stem Cell Res Ther ; 15(1): 56, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414067

ABSTRACT

BACKGROUND: Hyperactive coagulation might cause dangerous complications such as portal vein thrombosis and pulmonary embolism after mesenchymal stem/stromal cell (MSC) therapy. Tissue factor (TF), an initiator of the extrinsic coagulation pathway, has been suggested as a predictor of this process. METHODS: The expression of TF and other pro- and anticoagulant genes was analyzed in xeno- and serum-free manufactured MSCs. Furthermore, culture factors affecting its expression in MSCs were investigated. Finally, coagulation tests of fibrinogen, D-dimer, aPPTs, PTs, and TTs were measured in patient serum after umbilical cord (UC)-MSC infusions to challenge a potential connection between TF expression and MSC-induced coagulant activity.  RESULTS: Xeno- and serum-free cultured adipose tissue and UC-derived MSCs expressed the highest level of TF, followed by those from dental pulp, and the lowest expression was observed in MSCs of bone marrow origin. Environmental factors such as cell density, hypoxia, and inflammation impact TF expression, so in vitro analysis might fail to reflect their in vivo behaviors. MSCs also expressed heterogeneous levels of the coagulant factor COL1A1 and surface phosphatidylserine and anticoagulant factors TFPI and PTGIR. MSCs of diverse origins induced fibrin clots in healthy plasma that were partially suppressed by an anti-TF inhibitory monoclonal antibody. Furthermore, human umbilical vein endothelial cells exhibited coagulant activity in vitro despite their negative expression of TF and COL1A1. Patients receiving intravenous UC-MSC infusion exhibited a transient increase in D-dimer serum concentration, while this remained stable in the group with intrathecal infusion. There was no correlation between TF expression and D-dimer or other coagulation indicators. CONCLUSIONS: The study suggests that TF cannot be used as a solid biomarker to predict MSC-induced hypercoagulation. Local administration, prophylactic intervention with anticoagulation drugs, and monitoring of coagulation indicators are useful to prevent thrombogenic events in patients receiving MSCs. Trial registration NCT05292625. Registered March 23, 2022, retrospectively registered, https://www. CLINICALTRIALS: gov/ct2/show/NCT05292625?term=NCT05292625&draw=2&rank=1 . NCT04919135. Registered June 9, 2021, https://www. CLINICALTRIALS: gov/ct2/show/NCT04919135?term=NCT04919135&draw=2&rank=1 .


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Thrombosis , Humans , Thromboplastin/genetics , Thromboplastin/metabolism , Cells, Cultured , Thrombosis/genetics , Mesenchymal Stem Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Anticoagulants , Umbilical Cord
2.
Cell Biochem Funct ; 41(7): 823-832, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37515537

ABSTRACT

Choosing fusion tags to enhance the recombinant protein levels in the cytoplasm of Bacillus subtilis has been limited. Our previous study demonstrated that His-tag at the N-terminus could increase the expression levels of the low-expression gene egfp, while significantly reducing the high-expression genes gfp+ and bgaB in the cytoplasm of B. subtilis. In this study, we aimed to prove the potential of a fusion tag, the combination of the N-terminal domain of B. subtilis lysyl tRNA synthetase (LysSN) and His-tag with varying numbers of histidine (6xHis, 8xHis, 10xHis) by investigating their effects on the expression levels of egfp, gfp+ and bgaB in B. subtilis. For the low-expression gene, LysSN-xHis-tag could enhance the fluorescent intensity of EGFP 23.5 times higher than EGFP without a fusion tag, and 1.5 times higher than that fused with only His-tag. For high-expression genes, the expression level of BgaB and GFP+ was 2.9 and 12.5 times higher than that of His-tag, respectively. The number of histidines in LysSN-xHis-tag did not influence the expression levels of the high-expression genes but affected the expression levels of the low-expression gene.


Subject(s)
Bacillus subtilis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Gene Expression
3.
Data Brief ; 48: 109252, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383731

ABSTRACT

Ralstonia solanacearum is one of the major plant pathogens causing bacterial wilt disease in a variety of plant species. In Vietnam, according to our knowledge, we first discovered R. pseudosolanacearum, which is one of four phylotypes of R. solanacearum, as a causal agent wilting in cucumber (Cucumis sativus). Due to the latent infection of R. pseudosolanacearum and its heterogenous species complex, controlling the disease becomes difficult.Therefore, the study of R. pseudosolanacearum has great significance to generate effective disease management and treatment. Here, we assembled the isolate R. pseudosolanacearum strain T2C-Rasto, which possessed 183 contigs with 67.03% GC content of 5,628,295 bp in. This assembly included 4,893 protein sequences, 52 tRNA genes, and 3 rRNA genes. In addition, the virulence genes involved in the colonization of the bacterium and wilting to the host were defined in twitching motility (pilT, pilJ, pilH and pilG), chemotaxis (cheA and cheW), type VI secretion system (ompA, hcp, paar, tssB, tssC, tssF, tssG, tssK, tssH, tssJ, tssL and tssM), type III secretion system (hrpB and hrpF).

4.
Cell Mol Neurobiol ; 43(7): 3211-3250, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37356043

ABSTRACT

Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.


Subject(s)
Autism Spectrum Disorder , Stroke , Humans , Bone Marrow , Stroke/therapy , Bone Marrow Cells
5.
Heliyon ; 9(5): e15946, 2023 May.
Article in English | MEDLINE | ID: mdl-37229156

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that can be isolated from bone marrow, adipose tissue, the umbilical cord, dental pulp, etc. These cells have unique properties that give them excellent therapeutic potential, including immunoregulation, immunomodulation, and tissue regeneration functions. MSC-based products are considered advanced therapy medicinal products (ATMPs) under European regulations (1394/2007); thus, they must be manufactured under good manufacturing practices and via effective manufacturing methods. The former can be achieved via a proper laboratory design and compliance with manufacturing protocols, whereas the latter requires an approach that ensures that the quality of the products is consistent regardless of the manufacturing procedure. To meet these daunting requirements, this study proposes an exchangeable approach that combines optimized and equivalent manufacturing processes under the Quality by Design (QbD) principle, allowing investigators to convert from small laboratory-scale to large-scale manufacturing of MSC-based products for clinical applications without altering the quality and quantity of the cell-based products.

6.
World J Microbiol Biotechnol ; 39(6): 143, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37004690

ABSTRACT

The IPTG-inducible promoter family, Pgrac, allows high protein expression levels in an inducible manner. In this study, we constructed IPTG-inducible expression vectors containing strong Pgrac promoters that allow integration of the transgene at either the amyE or lacA locus or both loci in Bacillus subtilis. Our novel integrative expression vectors based on Pgrac promoters could control the repression of protein production in the absence and the induction in the presence of an inducer, IPTG. The ß-galactosidase (BgaB) protein levels were 9.0%, 15% and 30% of the total cellular protein in the B. subtilis strains carrying single cassettes with the Pgrac01, Pgrac100 or Pgrac212 promoters, respectively. The maximal induction ratio of Pgrac01-bgaB was 35.5 while that of Pgrac100-bgaB was 7.5 and that of Pgrac212-bgaB was 9. The inducible expression of GFP and BgaB protein was stably maintained for 24 h, with the highest yield of GFP being 24% of cell total protein while the maximum amount of BgaB was found to be 38%. A dual integration of two copies of the gfp+ gene into the B. subtilis genome at the lacA and amyE loci resulted in a yield of about 40% of total cellular protein and a 1.74-fold increase in GFP compared with single-integrated strains containing the same Pgrac212 promoter. The capability of protein production from low to high levels of these inducible integrative systems is useful for fundamental and applied research in B. subtilis.


Subject(s)
Bacillus subtilis , Genetic Vectors , Bacillus subtilis/metabolism , Isopropyl Thiogalactoside/metabolism , Isopropyl Thiogalactoside/pharmacology , Recombinant Proteins/genetics , Promoter Regions, Genetic , Genetic Vectors/genetics
7.
Polymers (Basel) ; 15(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36850240

ABSTRACT

Well-defined phosphonate-functionalized polycarbonate with low dispersity (Ð = 1.22) was synthesized using organocatalyzed ring-opening polymerization (ROP) of novel phosphonate-based cyclic monomers. Copolymerization was also performed to access different structures of phosphonate-containing polycarbonates (PC). Furthermore, phosphonate-functionalized PC was successfully synthesized using a combination of ROP and post-modification reaction.

8.
Polymers (Basel) ; 14(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36501722

ABSTRACT

New single-ion hybrid electrolytes have been synthetized via an original and simple synthetic approach combining Michael addition, epoxidation, and sol-gel polycondensation. We designed an organic PEO network as a matrix for the lithium transport, mechanically reinforced thanks to crosslinking inorganic (SiO1.5) sites, while highly delocalized anions based on lithium vinyl sulfonyl(trifluoromethane sulfonyl)imide (VSTFSILi) were grafted onto the inorganic sites to produce single-ion hybrid electrolytes (HySI). The influence of the electrolyte composition in terms of the inorganic/organic ratio and the grafted VSTFSILi content on the local structural organization, the thermal, mechanical, and ionic transport properties (ionic conductivity, transference number) are studied by a variety of techniques including SAXS, DSC, rheometry, and electrochemical impedance spectroscopy. SAXS measurements at 25 °C and 60 °C reveal that HySI electrolyte films display locally a spatial phase separation with domains composed of PEO rich phase and silica/VSTFSILi clusters. The size of these clusters increases with the silica and VSTFSILi content. A maximum ionic conductivity of 2.1 × 10-5 S·cm-1 at 80 °C has been obtained with HySI having an EO/Li ratio of 20. The Li+ ion transfer number of HySI electrolytes is high, as expected for a single-ion electrolyte, and comprises between 0.80 and 0.92.

9.
New Phytol ; 236(5): 1856-1870, 2022 12.
Article in English | MEDLINE | ID: mdl-36056465

ABSTRACT

The Xanthomonas transcription activator-like effector (TALE) protein AvrBs3 transcriptionally activates the executor-type resistance (R) gene Bs3 from pepper (Capsicum annuum), thereby triggering a hypersensitive cell death reaction (HR). AvrBs3 also triggers an HR in tomato (Solanum lycopersicum) upon recognition by the nucleotide-binding leucine-rich repeat (NLR) R protein Bs4. Whether the executor-type R protein Bs3 and the NLR-type R protein Bs4 use common or distinct signalling components to trigger an HR remains unclear. CRISPR/Cas9-mutagenesis revealed, that the immune signalling node EDS1 is required for Bs4- but not for Bs3-dependent HR, suggesting that NLR- and executor-type R proteins trigger an HR via distinct signalling pathways. CRISPR/Cas9-mutagenesis also revealed that tomato Bs4 suppresses the virulence function of both TALEs, the HR-inducing AvrBs3 protein and of AvrHah1, a TALE that does not trigger an HR in tomato. Analysis of AvrBs3- and AvrHah1-induced host transcripts and disease phenotypes in CRISPR/Cas9-induced bs4 mutant plants indicates that both TALEs target orthologous transcription factor genes to promote disease in tomato and pepper host plants. Our studies display that tomato mutants lacking the TALE-sensing Bs4 protein provide a novel platform to either uncover TALE-induced disease phenotypes or genetically dissect components of executor-triggered HR.


Subject(s)
Solanum lycopersicum , Xanthomonas , Transcription Activator-Like Effectors/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Diseases/genetics , Bacterial Proteins/metabolism , Xanthomonas/genetics , Plant Leaves/metabolism , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Biotechnol Rep (Amst) ; 35: e00754, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35911505

ABSTRACT

The influence of fusion tags to produce recombinant proteins in the cytoplasm of Bacillus subtilis is not well-studied as in E. coli. This study aimed to investigate the influence of His-tags with different codons on the protein production levels of the high expression gene (gfp+) and low expression gene (egfp) in the cytoplasm of B. subtilis cells. We used three different N-terminal His-tags, M-6xHis, MRGS-8xHis and MEA-8xHis, to investigate their effects on the production levels of GFP variants under the control of the Pgrac212 in B. subtilis. The fusions of His-tags with GFP+ caused a reduction compared to the construct without His-tag. When three His-tags fused with egfp, the EGFP production levels were significantly increased up to 3.5-, 12-, and 15-fold. This study suggested that His-tag at the N-terminus could enhance the protein production for the low expression gene and reduce that of the high expression gene in B. subtilis.

11.
Signal Transduct Target Ther ; 7(1): 272, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35933430

ABSTRACT

Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.


Subject(s)
Mesenchymal Stem Cells , Adipose Tissue , Cell Differentiation/genetics , Humans , Regenerative Medicine , Umbilical Cord
12.
Methods Mol Biol ; 2406: 233-243, 2022.
Article in English | MEDLINE | ID: mdl-35089561

ABSTRACT

Bacillus subtilis is a generally regarded as safe (GRAS) microorganism, which has been used for industrial production of recombinant enzymes. Many inducible and inducer-free expression vectors have been developed for intracellular production; some of those demonstrated the capability for protein expression up to 42% of total cellular proteins. In this chapter, we introduce the method to enhance the expression of soluble protein in B. subtilis. It includes the construction of vectors, the transformation of a plasmid into B. subtilis, and checking the expression of the protein.


Subject(s)
Bacillus subtilis , Protein Processing, Post-Translational , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Cytoplasm/metabolism , Gene Expression , Genetic Vectors/genetics , Plasmids/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Microb Cell Fact ; 20(1): 176, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488755

ABSTRACT

Monomeric autotransporters have been used extensively to transport recombinant proteins or protein domains to the cell surface of Gram-negative bacteria amongst others for antigen display. Genetic fusion of such antigens into autotransporters has yielded chimeras that can be used for vaccination purposes. However, not every fusion construct is transported efficiently across the cell envelope. Problems occur in particular when the fused antigen attains a relatively complex structure in the periplasm, prior to its translocation across the outer membrane. The latter step requires the interaction with periplasmic chaperones and the BAM (ß-barrel assembly machinery) complex in the outer membrane. This complex catalyzes insertion and folding of ß-barrel outer membrane proteins, including the ß-barrel domain of autotransporters. Here, we investigated whether the availability of periplasmic chaperones or the BAM complex is a limiting factor for the surface localization of difficult-to-secrete chimeric autotransporter constructs. Indeed, we found that overproduction of in particular the BAM complex, increases surface display of difficult-to-secrete chimeras. Importantly, this beneficial effect appeared to be generic not only for a number of monomeric autotransporter fusions but also for fusions to trimeric autotransporters. Therefore, overproduction of BAM might be an attractive strategy to improve the production of recombinant autotransporter constructs.


Subject(s)
Cell Membrane/metabolism , Escherichia coli/metabolism , Protein Translocation Systems/metabolism , Recombinant Proteins/biosynthesis , Escherichia coli/genetics , Protein Transport
14.
Macromol Rapid Commun ; 42(18): e2100181, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34142733

ABSTRACT

Herein, the synthesis of a novel nitroxide-mediated polymerization (NMP) initiator bearing a photolabile ortho-nitrobenzyl (oNB) group allowing surface-initiated NMP preparation of well-defined photoresponsive polystyrene grafted on silica nanoparticles is described. The photocleavable and photoresponsive properties of the prepared materials are demonstrated using small angle X-ray scattering (SAXS) characterization.


Subject(s)
Nanoparticles , Silicon Dioxide , Nitrogen Oxides , Polymerization , Polystyrenes , Scattering, Small Angle , X-Ray Diffraction
15.
Soft Matter ; 17(27): 6552-6565, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34151921

ABSTRACT

In this study, poly(ethylene oxide) monomethyl ether (MPEO) of molecular weight of 5000, 10 000, and 20 000 g mol-1 were grafted onto colloidal silica nanoparticles (NPs) of a 27.6 nm diameter using two distinct "grafting to" processes. The first method was based on the coupling reaction of epoxide-end capped MPEO with amine-functionalized silica NPs, while the second method was based on the condensation of triethoxysilane-terminated MPEO onto the unmodified silica NPs. The influence of PEO molecular weight, grafting process and grafting conditions (temperature, reactant concentration, reaction time) on the PEO grafting density was fully investigated. Thermogravimetric analysis (TGA) was used to determine the grafting density which ranged from 0.12 chains per nm2 using the first approach to 1.02 chains per nm2 when using the second approach. 29Si CP/MAS NMR characterization indirectly revealed that above a grafting density value of 0.3 PEO chains per nm2, a dendri-graft PEO network was built around the silica surface which was composed of PEO chains directly anchored to the silica surface and those grafted to silica NPs by intermediate of >CH-O-Si- bonds. The colloidal stability of the particles during different steps of the grafting process was characterized by small-angle X-ray scattering (SAXS). We have found that the colloidal systems are stable whatever the achieved grafting density due to the strong repulsions between the NPs, with the strength of repulsion increasing with the molecular weight of the grafted MPEO chains.

16.
Biotechnol Rep (Amst) ; 28: e00540, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33163371

ABSTRACT

Inducer-free integrative vectors are often used to create B. subtilis strains for industrial purposes, but employing strong promoters to produce high levels of recombinant proteins in B. subtilis results in high leaky expression that can hamper cloning in Escherichia coli. To overcome the problem, we used strong IPTG-inducible Pgrac promoters harboring lac operators to construct inducer-free integrative vectors able to integrate into the B. subtilis genome at either the lacA or the amyE locus, or both and examined their ability to repress the ß-galactosidase (bgaB) gene in E. coli and to overexpress BgaB in B. subtilis. The Pgrac01 vectors could repress bgaB expression about 24-fold in E. coli to low background levels. The integrated Pgrac01-bgaB constructs exhibited inducer-free expression and produced 8% of total cellular proteins, only 1.25 or 1.75 times less compared with their cognates as plasmids. The stronger promoters, Pgrac100-bgaB and Pgrac212-bgaB yielded 20.9 % and 42 % of total intracellular proteins after 12 h of incubation, respectively. Incorporation of the Pgrac212-bgaB into both amyE and lacA loci resulted in BgaB expression up to 53.4 %. In conclusion, integrative vectors containing the Pgrac promoter family have great potential for inducer-free overproduction of recombinant proteins in B. subtilis.

17.
J Biol Chem ; 295(18): 5960-5969, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32184351

ABSTRACT

Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1-5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1.


Subject(s)
Glutamic Acid/chemistry , Mycobacterium marinum/metabolism , Proline/chemistry , Type VII Secretion Systems/metabolism , Gene Expression Regulation, Bacterial , Mycobacterium marinum/genetics , Protein Domains , Type VII Secretion Systems/chemistry
18.
Curr Microbiol ; 76(12): 1477-1486, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31612259

ABSTRACT

Expression and secretion of recombinant proteins in the endotoxin-free bacterium, Bacillus subtilis, has been thoroughly studied, but overexpression in the cytoplasm has been limited to only a few proteins. Here, we used the robust IPTG-inducible promoter, Pgrac212, to overexpress human rhinovirus 3C protease (HRV3C) in the cytoplasm of B. subtilis cells. A novel solubility tag, the N-terminal domain of the lysS gene of B. subtilis coding for a lysyl-tRNA synthetase was placed at the N terminus with a cleavage site for the endoprotease HRV3C, followed by His-HRV3C or His-GST-HRV3C. The recombinant protease was purified by using a Ni-NTA column. In this study, the His-HRV3C and His-GST-HRV3C proteases were overexpressed in the cytoplasm of B. subtilis at 11% and 16% of the total cellular proteins, respectively. The specific protease activities were 8065 U/mg for His-HRV3C and 3623 U/mg for His-GST-HRV3C. The purified enzymes were used to cleave two different substrates followed by purification of the two different protein targets, the green fluorescent protein and the beta-galactosidase. In conclusion, the combination of an inducible promoter Pgrac212 and a solubility tag allowed the overexpression of the HRV3C protease in the cytoplasm of B. subtilis. The resulting fusion protein was purified using a nickel column and was active in cleaving target proteins to remove the fusion tags. This study offers an effective method for producing recombinant proteins in the cytoplasm of endotoxin-free bacteria.


Subject(s)
Bacillus subtilis/genetics , Cysteine Endopeptidases/genetics , Cytoplasm/metabolism , Industrial Microbiology/methods , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/genetics , Rhinovirus/enzymology , Viral Proteins/genetics , 3C Viral Proteases , Bacillus subtilis/metabolism , Cloning, Molecular , Cysteine Endopeptidases/isolation & purification , Gene Expression/drug effects , Green Fluorescent Proteins/genetics , Isopropyl Thiogalactoside/pharmacology , Lysine-tRNA Ligase/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Rhinovirus/genetics , Solubility , Viral Proteins/isolation & purification , beta-Galactosidase/genetics
19.
PLoS Pathog ; 14(8): e1007247, 2018 08.
Article in English | MEDLINE | ID: mdl-30102741

ABSTRACT

The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum.


Subject(s)
Bacterial Proteins/metabolism , Mycobacterium marinum/metabolism , Mycobacterium marinum/pathogenicity , Type VII Secretion Systems/genetics , Virulence Factors/physiology , Animals , Bacterial Proteins/genetics , Cells, Cultured , Embryo, Nonmammalian , Larva , Mice , Mycobacterium marinum/genetics , RAW 264.7 Cells , Sheep , Type VII Secretion Systems/metabolism , Virulence/genetics , Virulence Factors/genetics , Zebrafish/embryology , Zebrafish/growth & development
20.
FEMS Microbiol Lett ; 365(18)2018 09 01.
Article in English | MEDLINE | ID: mdl-30085058

ABSTRACT

Chaperones are central players in maintaining the proteostasis in all living cells. Besides highly conserved generic chaperones that assist protein folding and assembly in the cytosol, additional more specific chaperones have evolved to ensure the successful trafficking of proteins with extra-cytoplasmic locations. Associated with the distinctive secretion systems present in bacteria, different dedicated chaperones have been described that not only keep secretory proteins in a translocation competent state, but often are also involved in substrate targeting to the specific translocation channel. Recently, a new class of such chaperones has been identified that are involved in the specific recognition of substrates transported via the type VII secretion pathway in mycobacteria. In this minireview, we provide an overview of the different bacterial chaperones with a focus on their roles in protein secretion and will discuss in detail the roles of mycobacterial type VII secretion chaperones in substrate recognition and targeting.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Molecular Chaperones/metabolism , Mycobacterium/enzymology , Mycobacterium/metabolism , Protein Folding , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...