Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 269(Pt 1): 132122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718992

ABSTRACT

In the treatment of bowel diseases such as ulcerative colitis through oral administration, an effective drug delivery system targeting the colon is crucial for enhancing efficacy and minimizing side effects of therapeutic agents. This study focuses on the development of a novel nanocomposite hydrogel bead comprising a synergistic blend of biological macromolecules, namely sodium alginate (ALG) and hyaluronic acid (HA), reinforced with layered double hydroxide nanoparticles (LDHs) for the oral delivery of dual therapeutics. The synthesized hydrogel bead exhibits significantly enhanced gel strength and controllable release of methylprednisolone (MP) and curcumin (CUR), serving as an anti-inflammatory drug and a mucosal healing agent, compared to native ALG or ALG/HA hydrogel beads without LDHs. The physicochemical properties of the synthesized LDHs and hydrogel beads were characterized using various techniques, including scanning electron microscopy, zeta potential measurement, transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In vitro release studies of MP and CUR under simulated gastrointestinal tract (GIT) conditions demonstrate the superior controlled release property of the nanocomposite hydrogel bead, particularly in minimizing premature drug release in the upper GIT environment while sustaining release of over 82 % of drugs in the colonic environment. Thus, the modularly engineered carrier designed for oral colon targeting holds promise as a potential candidate for the treatment of ulcerative colitis.


Subject(s)
Alginates , Drug Liberation , Hyaluronic Acid , Hydrogels , Nanoparticles , Alginates/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Nanoparticles/chemistry , Administration, Oral , Drug Carriers/chemistry , Humans , Hydroxides/chemistry , Curcumin/chemistry , Curcumin/administration & dosage , Curcumin/pharmacology , Methylprednisolone/chemistry , Methylprednisolone/administration & dosage , Drug Delivery Systems , Colitis, Ulcerative/drug therapy
2.
J Pharm Sci ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38527617

ABSTRACT

Bioscaffolds, which promote cell regeneration and restore tissues' functions, have emerged as significant need in clinic. The hybrid of several biomaterials in a bioscaffold renders clinically advanced and relevant properties for applications yet add challenges in cost efficiency, production, and clinical investigation. This study proposes a facile and sustainable method to formulate a triple-hybrid bioscaffold based on Vietnamese cocoon origin Silk Fibroin, Chitosan, and nano-Biphasic Calcium Phosphates (nano-BCP) that can be easily molded, has high porosity (55-80%), and swelling capacity that facilitates cell proliferation and nutrient diffusion. Notably, their mechanical properties, in particular compressive strength, can easily be tuned in a range from 50 - 200 kPa by changing the amount of nano-BCP addition, which is comparable to the successful precedents for productive cell regeneration. The latter parts investigate the biopharmaceutical properties of a representative bioscaffold, including drug loading and release studies with two kinds of active compounds, salmon calcitonin and methylprednisolone. Furthermore, the bioscaffold is highly biocompatible as the results of hemocompatibility and hemostasis tests, as well as ovo chick chorioallantoic membrane investigation. The findings of the study suggest the triple-hybrid scaffold as a promising platform for multi-functional drug delivery and bone defect repair.

4.
J Nanobiotechnology ; 21(1): 405, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37919778

ABSTRACT

Chronic Kidney Disease (CKD) which involves gradual loss of kidney function is characterized by low levels of a glycoprotein called Erythropoietin (EPO) that leads to red blood cell  deficiency and anemia. Recombinant human EPO (rhEPO) injections that are administered intravenously or subcutaneously is the current gold standard for treating CKD. The rhEPO injections have very short half-lives and thus demands frequent administration with a risk of high endogenous EPO levels leading to severe side effects that could prove fatal. To this effect, this work provides a novel approach of using lamellar inorganic solids with a brucite-like structure for controlling the release of protein therapeutics such as rhEPO in injectable hydrogels. The nanoengineered injectable system was formulated by incorporating two-dimensional layered double hydroxide (LDH) clay materials with a high surface area into alginate hydrogels for sustained delivery. The inclusion of LDH in the hydrogel network not only improved the mechanical properties of the hydrogels (5-30 times that of alginate hydrogel) but also exhibited a high binding affinity to proteins without altering their bioactivity and conformation. Furthermore, the nanoengineered injectable hydrogels (INHs) demonstrated quick gelation, injectability, and excellent adhesion properties on human skin. The in vitro release test of EPO from conventional alginate hydrogels (Alg-Gel) showed 86% EPO release within 108 h while INHs showed greater control over the initial burst and released only 24% of EPO in the same incubation time. INH-based ink was successfully used for 3D printing, resulting in scaffolds with good shape fidelity and stability in cell culture media. Controlled release of EPO from INHs facilitated superior angiogenic potential in ovo (chick chorioallantoic membrane) compared to Alg-Gel. When subcutaneously implanted in albino mice, the INHs formed a stable gel in vivo without inducing any adverse effects. The results suggest that the proposed INHs in this study can be utilized as a minimally invasive injectable platform or as 3D printed patches for the delivery of protein therapeutics to facilitate tissue regeneration.


Subject(s)
Hydrogels , Renal Insufficiency, Chronic , Mice , Animals , Humans , Hydrogels/chemistry , Tissue Engineering/methods , Delayed-Action Preparations/pharmacology , Alginates/chemistry , Hydroxides
5.
ACS Appl Mater Interfaces ; 14(38): 42812-42826, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36112403

ABSTRACT

In situ-gel-forming thermoresponsive copolymers have been widely exploited in controlled delivery applications because their critical gel temperature is similar to human body temperature. However, there are limitations to controlling the delivery of biologics from a hydrogel network because of the poor networking and reinforcement between the copolymer networks. This study developed an in situ-forming robust injectable and 3D printable hydrogel network based on cellulose nanocrystals (CNCs) incorporated amphiphilic copolymers, poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide (PCLA). In addition, the physicochemical and mechanical properties of injectable hydrogels were controlled by physically incorporating CNCs with amphiphilic PCLA copolymers. CNCs played an unprecedented role in physically reinforcing the PCLA copolymers' micelle network via intermicellar bridges. Apart from that, the free-flowing closely packed rod-like CNCs incorporated PCLA micelle networks at low temperature transformed to a stable viscoelastic hydrogel network at physiological temperature. CNC incorporated PCLA copolymer sols effectively coordinated with hydrophobic doxorubicin and water-soluble lysozyme by a combination of hydrophobic and hydrogen bonding interaction and controlled the release of biologics. As shown by the 3D printing results, the biocompatible PCLA hydrogels continuously extruded during printing had good injectability and maintained high shape fidelity after printing without any secondary cross-linking steps. The interlayer bonding between the printed layers was high and formed stable 3D structures up to 10 layers. Subcutaneous injection of free-flowing CNC incorporated PCLA copolymer sols to BALB/c mice formed a hydrogel instantly and showed controlled biodegradation of the hydrogel depot without induction of toxicity at the implantation sites or surrounding tissues. At the same time, the in vivo antitumor effect on the MDA-MB-231 tumor xenograft model demonstrated that DOX-loaded hydrogel formulation significantly inhibited the tumor growth. In summary, the CNC incorporated biodegradable hydrogels developed in this study exhibit a prolonged release with special release kinetics for hydrophobic and hydrophilic biologics.


Subject(s)
Biological Products , Breast Neoplasms , Nanoparticles , Animals , Breast Neoplasms/drug therapy , Cellulose , Delayed-Action Preparations/pharmacology , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Female , Humans , Hydrogels/chemistry , Mice , Micelles , Muramidase , Nanoparticles/therapeutic use , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Printing, Three-Dimensional , Temperature , Water
6.
Colloids Surf B Biointerfaces ; 219: 112859, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36162179

ABSTRACT

Articular cartilage injury is characterized by limited self-repair capacity due to the shortage of blood vessels, lymphatics, and nerves. Hence, this study aims to exploit a classic injectable hydrogel platform that can restore the cartilage defects with minimally invasive surgery, which is similar to the natural extracellular microenvironment, and highly porous network for cell adhesion and proliferation. In this study, an injectable scaffold system comprised of silk fibroin (SF) and hyaluronic acid (HA) was developed to adapt the above requirements. Besides, methylprednisolone (MP) was encapsulated by SF/HA scaffold for alleviating inflammation. The SF/HA hydrogel scaffold was prepared by chemical cross-linking between the lysine residues of SF via Schiff base formation, and pore diameter of the obtained hydrogels was 100.47 ± 32.09 µm. The highly porous nature of hydrogel could further benefit the soft tissue regeneration. Compared with HA-free hydrogels, SF/HA hydrogel showed more controlled release on MP. In ovo experiment of chick embryo chorioallantoic membrane (CAM) demonstrated that SF/HA hydrogels not altered the angiogenesis and formation of blood vessels, thus making it suitable for cartilage regeneration. Furthermore, in vivo gel formation was validated in mice model, suggesting in situ gel formation of SF/HA hydrogels. More importantly, SF/HA hydrogels exhibited the controlled biodegradation. Overall, SF/HA hydrogels provide further insights to the preparation of effective scaffold for tissue regeneration and pave the way to improve the articular cartilage injury treatment.

7.
Int J Biol Macromol ; 222(Pt A): 262-271, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36150568

ABSTRACT

Here, core-shell hydrogel beads for oral insulin delivery at intestine was reported, which was a target site for insulin absorption. The core-shell hydrogel beads were prepared using naturally derived alginate and chitosan polysaccharides by simple dropping technique. In order to effectively control leakage of insulin from core-shell hydrogel beads, insulin was embedded into the layered double hydroxides (LDHs). LDH/insulin-loaded complexes were firstly coated with chitosan, and then coated with alginate to generate core-shell hydrogel beads. The biocompatibility and angiogenic response of core-shell hydrogel beads were evaluated by direct contact of the beads with chick embryo chorioallantoic membrane, which indicates safety of the core-shell beads. The beads successfully retained the insulin within the core-shell structure at pH 1.2, indicating that insulin had a good protective effect in harsh acidic environments. Interestingly, insulin release starts at the simulated intestinal fluid (pH 6.8) and continue to release for 24 h in a sustained manner.


Subject(s)
Alginates , Chitosan , Chick Embryo , Animals , Alginates/chemistry , Chitosan/chemistry , Insulin/chemistry , Hydrogels , Hexuronic Acids/chemistry , Glucuronic Acid/chemistry , Hydrogen-Ion Concentration
8.
Pharmaceutics ; 14(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35456546

ABSTRACT

Despite the potential of hydrogel-based localized cancer therapies, their efficacy can be limited by cancer recurrence. Therefore, it is of great significance to develop a hydrogel system that can provoke robust and durable immune response in the human body. This study has developed an injectable protein-polymer-based porous hydrogel network composed of lysozyme and poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide (PCLA) (Lys-PCLA) bioconjugate for the active recruitment dendritic cells (DCs). The Lys-PCLA bioconjugates are prepared using thiol-ene reaction between thiolated lysozyme (Lys-SH) and acrylated PCLA (PCLA-Ac). The free-flowing Lys-PCLA bioconjugate sols at low temperature transformed to immovable gel at the physiological condition and exhibited stability upon dilution with buffers. According to the in vitro toxicity test, the Lys-PCLA bioconjugate and PCLA copolymer were non-toxic to RAW 263.7 cells at higher concentrations (1000 µg/mL). In addition, subcutaneous administration of Lys-PCLA bioconjugate sols formed stable hydrogel depot instantly, which suggested the in situ gel forming ability of the bioconjugate. Moreover, the Lys-PCLA bioconjugate hydrogel depot formed at the interface between subcutaneous tissue and dermis layers allowed the active migration and recruitment of DCs. As suggested by these results, the in-situ forming injectable Lys-PCLA bioconjugate hydrogel depot may serve as an implantable immune niche for the recruitment and modification of DCs.

9.
Biomacromolecules ; 22(2): 572-585, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33346660

ABSTRACT

Core-shell structured nanoparticles (NPs) render the simultaneous coloading capacity of both hydrophobic and hydrophilic drugs and may eventually enhance therapeutic efficacy. In this study, we employed a facile squalenoylation technology to synthesize a new amphiphilic starch derivative from partially oxidized starch, which self-assembled into core-shell starch NPs (StNPs) only at a squalenyl degree of substitution (DoS) of ∼1%. The StNPs characteristics could be tuned as the functions of the polymer molecular weight, DoS, and NPs concentration. The biopharmaceutical features of the StNPs, including colloidal stability, carrier properties, and biocompatibility, were carefully investigated. The interaction study between StNPs and mucin glycoproteins, the main organic component of mucus, revealed a moderate mucin interacting profile. Furthermore, the StNPs also showed good penetration through Pseudomonas aeruginosa biofilms. These results nominate StNPs as a versatile drug delivery platform with potential applications for mucosal drug delivery and the treatment of persistent infections.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Drug Carriers , Drug Delivery Systems , Hydrophobic and Hydrophilic Interactions , Starch
10.
Nanomaterials (Basel) ; 10(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192177

ABSTRACT

Phytoconstituents presenting in herbal plant broths are the biocompatible, regenerative, and cost-effective sources that can be utilized for green synthesis of silver nanoparticles. Different plant extracts can form nanoparticles with specific sizes, shapes, and properties. In the study, we prepared silver nanoparticles (P.uri.AgNPs, P.zey.AgNPs, and S.dul.AgNPs) based on three kinds of leaf extracts (Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis, respectively) and demonstrated the antifungal capacity. The silver nanoparticles were simply formed by adding silver nitrate to leaf extracts without using any reducing agents or stabilizers. Formation and physicochemical properties of these silver nanoparticles were characterized by UV-vis, Fourier transforms infrared spectroscopy, scanning electron microscope, transmission electron microscope, and energy dispersive X-ray spectroscopy. P.uri.AgNPs were 28.3 nm and spherical. P.zey.AgNPs were 26.7 nm with hexagon or triangle morphologies. Spherical S.dul.AgNPs were formed and they were relatively smaller than others. P.uri.AgNPs, P.zey.AgNPs and S.dul.AgNPs exhibited the antifungal ability effective against Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum, demonstrating their potentials as fungicides in the biomedical and agricultural applications.

11.
Biomaterials ; 230: 119599, 2020 02.
Article in English | MEDLINE | ID: mdl-31718883

ABSTRACT

Cancer vaccines that elicit a robust and durable antitumor response show great promise in cancer immunotherapy. Nevertheless, low immunogenicity and weak immune response limit the application of cancer vaccines. To experience next generation cancer vaccines that elicit robust, durable, and anti-tumor T cell response, herein we design injectable smart hydrogels (ISHs) that self-assemble into a cellular microenvironment-like microporous network using a simple hypodermic needle injection, to localize the immune cells and program host cells. ISHs, composed of levodopa- and poly(ε-caprolactone-co-lactide)ester-functionalized hyaluronic acid (HA-PCLA), are loaded with immunomodulatory factor (OVA expressing plasmid, pOVA)-bearing nano-sized polyplexes and granulocyte-macrophage colony-stimulating factor (GM-CSF) as dendritic cell (DC) enhancement factor. Subcutaneous administration of ISHs effectively localized immune cells, and controlled the delivery of immunomodulatory factors to recruit immune cells. The microporous network allowed the recruitment of a substantial number of DCs, which was 6-fold higher than conventional PCLA counterpart. The locally released nano-sized polyplexes effectively internalized to DCs, resulting in the presentation of tumor-specific OVA epitope, and subsequent activation of CD4+ T cells and generation of OVA-specific serum antibody. By the controlled release of nano-sized polyplexes and GM-CSF through a single subcutaneous injection, the ISHs effectively eliminated B16/OVA melanoma tumors in mice. These ISHs can be administered using a minimal invasive technique that could bypass the need for extracorporeal training of cells ex vivo, and provide sustained release of cancer vaccines for immunomodulation. These important findings suggest that ISHs can serve as powerful biomaterials for cancer immunotherapy.


Subject(s)
Cancer Vaccines , Hydrogels , Immunity, Humoral , Lung Neoplasms , Animals , Dendritic Cells/immunology , Humans , Lung , Lung Neoplasms/therapy , Mice , Mice, Inbred C57BL , Tumor Microenvironment
12.
Biomater Sci ; 5(11): 2285-2294, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29019478

ABSTRACT

Stimuli-responsive hydrogels, known as smart hydrogels, are three-dimensional amphiphilic or hydrophilic polymer networks that are able to change their volume or phase, and other properties, including viscosity, structure, and dimension, in response to changes in pH, temperature, and magnetic or electric field. Highly swellable, dual-responsive bovine serum albumin (BSA)-based injectable hydrogels are prepared here by the chemical conjugation of pH- and temperature-responsive oligo(sulfamethazine acrylate-co-N-isopropylacrylamide) (oligo(SMA-co-NIPAM)) copolymers on the surface of BSA through carbodiimide-mediated chemistry. The pH- and temperature-responsive oligomer-bearing BSA conjugates show rapid sol-to-gel phase transition properties. Specifically, the free-flowing conjugates at high pH (pH 8.4, 23 °C) are transformed to a viscoelastic gel under physiological conditions (pH 7.4, 37 °C). The swelling ratio, gel strength, and pore size of the BSA hydrogel were tuned by altering the conjugation ratio of the oligo(SMA-co-NIPAM) copolymers of various lengths and compositions to BSA. Subcutaneously administered BSA conjugate sols into the dorsal region of Sprague-Dawley rats formed an in situ gel. When the oligo(NIPAM) content in the hydrogel was high, the degradation rate of BSA hydrogels was remarkably slow, and two weeks after in vivo administration, the hydrogels with high oligo(NIPAM) had swollen more than 4-fold. An in vivo biodegradation study demonstrated that no necrosis or hemorrhage was observed in the tissues with the hydrogels. The concurrent stimuli-responsivity under physiological conditions and high elasticity suggest that these smart hydrogels may open a new avenue for hydrogel applications.


Subject(s)
Engineering , Hydrogels/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , HEK293 Cells , Humans , Hydrogels/pharmacology , Hydrogen-Ion Concentration , Injections , Materials Testing , Phase Transition , Rats , Rats, Sprague-Dawley , Rheology , Temperature
13.
J Mater Chem B ; 5(34): 7140-7152, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-32263905

ABSTRACT

Cisplatin (CDDP) is a well-known anticancer agent, and it has been widely used to treat various solid tumors during clinical cancer therapy. Nevertheless, therapeutic applications of CDDP are hampered by its severe side effects. Although CDDP can be encapsulated into nano-scale drug delivery formulations to improve its physicochemical properties, the lack of stability in the formulation and cancer cell-specific targetability have prompted the exploration of novel vectors for the targeted delivery of CDDP. Here, we introduce CDDP-bearing chondroitin sulfate nanogels (CS-nanogels) that are synthesized through a chelating ligand-metal coordination cross-linking reaction, and then incorporated into pH- and temperature-responsive bioresorbable poly(ethylene glycol)-poly(ß-aminoester urethane) (PEG-PAEU) hydrogels for cancer cell-specific delivery of CDDP. The CS-nanogels released from the hydrogels exhibit a pH-dependent release of CDDP. CDDP was released slowly under physiological conditions (pH 7.4), whereas the release of CDDP was triggered under acidic conditions (pH 5.0). Confocal microscopy images demonstrated that fluorescein-5-thiosemicarbazide-labeled CS-nanogels released from the hydrogels selectively bound to the A549 lung carcinoma cell line through the overexpressing CD44 receptor but not to NIH 3T3 cells. An in vitro cytotoxicity test indicated that CS-nanogels released from the hydrogels effectively inhibited the growth of A549 lung carcinoma cells. Subcutaneous injection of CS-nanogel-loaded PEG-PAEU copolymer sols into the dorsal region of Sprague-Dawley rats spontaneously formed a viscoelastic gel without causing noticeable inflammation at the injection site and was found to be bioresorbable in eight weeks. Overall, the injectable hydrogel-incorporated CS-nanogels were demonstrated to be a useful formulation for the targeted delivery of CDDP.

14.
Macromol Rapid Commun ; 37(23): 1881-1896, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27753168

ABSTRACT

Stimuli-sensitive injectable polymeric hydrogels are one of the promising delivery vehicles for the controlled release of bioactive agents. In aqueous solutions, these polymers are able to switch sol-to-gel transitions in response to various stimuli including pH, temperature, light, enzyme and magnetic field. Therapeutic agents, including chemotherapeutic agents, protein drugs or cells, are easily mixed with the low-viscous polymer solution at room temperature. Therapeutic-agents-containing solutions are readily injected into target sites through syringe or catheter, which could form hydrogel depot and serve as bioactive molecules release carriers. In particular, they are convenient for in vivo injection in a minimally invasive manner. Owing to their ease of handling, hydrogel scaffolds encapsulated with a wide array of therapeutic agents including growth factors, cells or fillers have been used in regeneration or filling of the defect area. Therefore, injectable hydrogels found a variety of biomedical applications, such as drug delivery and tissue engineering. Here, we summarize the chemical designs and recent developments of polysaccharide-based injectable hydrogels, giving a special attention to hydrogels prepared using amphiphilic polysaccharides for biomedical applications. Advantages and future perspectives of polysaccharide-based injectable hydrogels are highlighted.


Subject(s)
Biomedical Technology , Hydrogels/chemistry , Polysaccharides/chemistry , Hydrogels/chemical synthesis , Polysaccharides/chemical synthesis , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry
15.
Sci Rep ; 6: 29978, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27436576

ABSTRACT

In this study, a new pH-/temperature-sensitive, biocompatible, biodegradable, and injectable hydrogel based on poly(ethylene glycol)-poly(amino carbonate urethane) (PEG-PACU) copolymers has been developed for the sustained delivery of human growth hormone (hGH). In aqueous solutions, PEG-PACU-based copolymers existed as sols at low pH and temperature (pH 6.0, 23 °C), whereas they formed gels in the physiological condition (pH 7.4, 37 °C). The physicochemical characteristics, including gelation rate, mechanical strength and viscosity, of the PEG-PACU hydrogels could be finely tuned by varying the polymer weight, pH and temperature of the copolymer. An in vivo injectable study in the back of Sprague-Dawley (SD) rats indicated that the copolymer could form an in situ gel, which exhibited a homogenous porous structure. In addition, an in vivo biodegradation study of the PEG-PACU hydrogels showed controlled degradation of the gel matrix without inflammation at the injection site and the surrounding tissue. The hGH-loaded PEG-PACU copolymer solution readily formed a hydrogel in SD rats, which subsequently inhibited the initial hGH burst and led to the sustained release of hGH. Overall, the PEG-PACU-based copolymers prepared in this study are expected to be useful biomaterials for the sustained delivery of hGH.


Subject(s)
Biocompatible Materials , Drug Carriers , Human Growth Hormone/administration & dosage , Hydrogels , Hydrogen-Ion Concentration , Polyurethanes , Temperature , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Line , Cell Survival/drug effects , Drug Liberation , Drug Stability , Humans , Hydrogels/chemistry , Male , Materials Testing , Phase Transition , Polyethylene Glycols/chemistry , Polyurethanes/chemical synthesis , Polyurethanes/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...