Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894123

ABSTRACT

The self-sensing technology of microactuators utilizes a smart material to concurrently actuate and sense in a closed-loop control system. This work aimed to develop a position feedback-control system of nickel electrothermal microactuators using a resistivity self-sensing technique. The system utilizes the change in heating/sensing elements' resistance, due to the Joule heat, as the control parameter. Using this technique, the heating/sensing elements would concurrently sense and actuate in a closed loop control making the structures of microactuators simple. From a series of experiments, the proposed self-sensing feedback control system was successfully demonstrated. The tip's displacement error was smaller than 3 µm out of the displacement span of 60 µm. In addition, the system was less sensitive to the abrupt temperature change in surroundings as it was able to displace the microactuator's tip back to the desired position within 5 s, which was much faster than a feed-forward control system.

2.
Sensors (Basel) ; 23(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904753

ABSTRACT

Multiple-input multiple-output (MIMO) radars enable better estimation accuracy with improved resolution in contrast to traditional radar systems; thus, this field has attracted attention in recent years from researchers, funding agencies, and practitioners. The objective of this work is to estimate the direction of arrival of targets for co-located MIMO radars by proposing a novel approach called flower pollination. This approach is simple in concept, easy to implement and has the capability of solving complex optimization problems. The received data from the far field located targets are initially passed through the matched filter to enhance the signal-to-noise ratio, and then the fitness function is optimized by incorporating the concept of virtual or extended array manifold vectors of the system. The proposed approach outperforms other algorithms mentioned in the literature by utilizing statistical tools for fitness, root mean square error, cumulative distribution function, histograms, and box plots.

3.
PeerJ Comput Sci ; 8: e878, 2022.
Article in English | MEDLINE | ID: mdl-35494866

ABSTRACT

The plaque assay is a standard quantification system in virology for verifying infectious particles. One of the complex steps of plaque assay is the counting of the number of viral plaques in multiwell plates to study and evaluate viruses. Manual counting plaques are time-consuming and subjective. There is a need to reduce the workload in plaque counting and for a machine to read virus plaque assay; thus, herein, we developed a machine-learning (ML)-based automated quantification machine for viral plaque counting. The machine consists of two major systems: hardware for image acquisition and ML-based software for image viral plaque counting. The hardware is relatively simple to set up, affordable, portable, and automatically acquires a single image or multiple images from a multiwell plate for users. For a 96-well plate, the machine could capture and display all images in less than 1 min. The software is implemented by K-mean clustering using ML and unsupervised learning algorithms to help users and reduce the number of setup parameters for counting and is evaluated using 96-well plates of dengue virus. Bland-Altman analysis indicates that more than 95% of the measurement error is in the upper and lower boundaries [±2 standard deviation]. Also, gage repeatability and reproducibility analysis showed that the machine is capable of applications. Moreover, the average correct measurements by the machine are 85.8%. The ML-based automated quantification machine effectively quantifies the number of viral plaques.

4.
Sensors (Basel) ; 23(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616615

ABSTRACT

A collaborative painting robot that can be used as an alternative to workers has been developed using a digital twin framework and its performance was demonstrated experimentally. The digital twin of the automatic painting robot simulates the entire process and estimates the paint result before the real execution. An operator can view the simulated process and result with an option to either confirm or cancel the task. If the task is accepted, the digital twin generates all the parameters, including the end effector trajectory of the robot, the material flow to the collaborative robot, and a spray mechanism. This ability means that the painting process can be practiced in a virtual environment to decrease set costs, waste, and time, all of which are highly demanded in single-item production. In this study, the screen was fixtureless and, thus, a camera was used to capture it in a physical environment, which was further analyzed to determine its pose. The digital twin then builds the screen in real-time in a virtual environment. The communication between the physical and digital twins is bidirectional in this scenario. An operator can design a painting pattern, such as a basic shape and/or letter, along with its size and paint location, in the resulting procedure. The digital twin then generates the simulation and expected painting result using the physical twin's screen pose. The painting results show that the root mean square error (RMSE) of the painting is less than 1.5 mm and the standard deviation of RMSE is less than 0.85 mm. Additionally, the initial benefits of the technique include lower setup costs, waste, and time, as well as an easy-to-use operating procedure. More benefits are expected from the digital twin framework, such as the ability of the digital twin to (1) find a solution when a fault arises, (2) refine the control or optimize the operation, and (3) plan using historic data.

5.
PLoS One ; 16(11): e0259438, 2021.
Article in English | MEDLINE | ID: mdl-34780504

ABSTRACT

Autonomous vehicles are regarded as future transport mechanisms that drive the vehicles without the need of drivers. The photonic-based radar technology is a promising candidate for delivering attractive applications to autonomous vehicles such as self-parking assistance, navigation, recognition of traffic environment, etc. Alternatively, microwave radars are not able to meet the demand of next-generation autonomous vehicles due to its limited bandwidth availability. Moreover, the performance of microwave radars is limited by atmospheric fluctuation which causes severe attenuation at higher frequencies. In this work, we have developed coherent-based frequency-modulated photonic radar to detect target locations with longer distance. Furthermore, the performance of the proposed photonic radar is investigated under the impact of various atmospheric weather conditions, particularly fog and rain. The reported results show the achievement of significant signal to noise ratio (SNR) and received power of reflected echoes from the target for the proposed photonic radar under the influence of bad weather conditions. Moreover, a conventional radar is designed to establish the effectiveness of the proposed photonic radar by considering similar parameters such as frequency and sweep time.


Subject(s)
Autonomous Vehicles , Radar
6.
Talanta ; 233: 122538, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215041

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. More than 400 million people worldwide are affected by this genetic condition. Testing for G6PD deficiency before drug administration is essential for patient safety. Rapidly ascertaining the G6PD status of a person is desirable for proper treatment. The device described in this study, the G6PD diaxBOX, was developed to quantify G6PD deficiency using paper-based analytical devices (PADs) and a colorimetric assay. The G6PD diaxBOX is a straightforward, affordable, portable, and instrument-free analytical system. The major components of the G6PD diaxBox are a banknote-checking UV fluorescent lamp and camera that are easy to access and analysis software. When NADPH is generated, it absorbs at UV 340 nm and emits colored light that is detected with the camera. The determined Pearson's coefficient shows that the color intensity measured from the G6PD diaxBOX correlated with G6PD activity level. Also, a Bland-Altman analysis indicated that more than 95% of the measurement error was in the upper and lower boundaries (±2 SD) and the error from the severe and moderate deficiency group was less than ± 1 SD. Therefore, the error from G6PD diaxBOX was within the limit boundary and the overall accuracy was more than 80%. The G6PD diaxBOX facilitates the effective and efficient quantification of G6PD deficiency and as such represents a clinically well-suited, rapid point-of-care test.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Glucosephosphate Dehydrogenase , Colorimetry , Humans , Point-of-Care Testing , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...