Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38260257

ABSTRACT

The rodent hippocampus is a spatially organized neuronal network that supports the formation of spatial and episodic memories. We conducted bulk RNA sequencing and spatial transcriptomics experiments to measure gene expression changes in the dorsal hippocampus following the recall of active place avoidance (APA) memory. Through bulk RNA sequencing, we examined the gene expression changes following memory recall across the functionally distinct subregions of the dorsal hippocampus. We found that recall induced differentially expressed genes (DEGs) in the CA1 and CA3 hippocampal subregions were enriched with genes involved in synaptic transmission and synaptic plasticity, while DEGs in the dentate gyrus (DG) were enriched with genes involved in energy balance and ribosomal function. Through spatial transcriptomics, we examined gene expression changes following memory recall across an array of spots encompassing putative memory-associated neuronal ensembles marked by the expression of the IEGs Arc, Egr1, and c-Jun. Within samples from both trained and untrained mice, the subpopulations of spatial transcriptomic spots marked by these IEGs were transcriptomically and spatially distinct from one another. DEGs detected between Arc+ and Arc- spots exclusively in the trained mouse were enriched in several memory-related gene ontology terms, including "regulation of synaptic plasticity" and "memory." Our results suggest that APA memory recall is supported by regionalized transcriptomic profiles separating the CA1 and CA3 from the DG, transcriptionally and spatially distinct IEG expressing spatial transcriptomic spots, and biological processes related to synaptic plasticity as a defining the difference between Arc+ and Arc- spatial transcriptomic spots.

2.
Behav Brain Res ; 437: 114132, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36181946

ABSTRACT

Autism spectrum disorder (ASD) is characterized by deficits in social communication and repetitive behaviors/restricted interests. One mouse model of ASD is the BTBR T+Itprtf/J (BTBR) mice which display low levels of social behavior in several tests. The social approach test is used to examine the preference for social interaction between a stranger mouse or a novel object. While female BTBR mice have been used in the social approach test, no one has examined the degree to which the strain of the stranger mouse will affect social behavior. The current experiment tested female BTBR subject mice in the social approach test with stranger mice from different strains including the BTBR, 129S1/SvImJ (129), and C57BL/6J (B6) mice, of which the B6 mice are most social. The results show that female BTBR mice overall spent significantly more time in the stranger mouse chamber. However, further analysis revealed that the subject mice spent significantly more time in the stranger mouse chamber when the stranger was from the B6 strain, but not the BTBR or 129 strains. The BTBR female mice also sniffed the B6 and 129 stranger mice more than the novel object. This suggests that BTBR females are more social with mice that display high levels of social behavior, but less so with less social mice.


Subject(s)
Autism Spectrum Disorder , Mice , Female , Animals , Mice, Inbred C57BL , Mice, Inbred Strains , Social Behavior , Disease Models, Animal
3.
PLoS One ; 13(10): e0203374, 2018.
Article in English | MEDLINE | ID: mdl-30281601

ABSTRACT

The transition from short-term to long-term forms of synaptic plasticity requires protein synthesis and new gene expression. Most efforts to understand experience-induced changes in neuronal gene expression have focused on the transcription products of RNA polymerase II-primarily mRNAs and the proteins they encode. We recently showed that nucleolar integrity and activity-dependent ribosomal RNA (rRNA) synthesis are essential for the maintenance of hippocampal long-term potentiation (LTP). Consequently, the synaptic plasticity and memory hypothesis predicts that nucleolar integrity and activity dependent rRNA synthesis would be required for Long-term memory (LTM). We tested this prediction using the hippocampus-dependent, Active Place Avoidance (APA) spatial memory task and found that training induces de novo rRNA synthesis in mouse dorsal hippocampus. This learning-induced increase in nucleolar activity and rRNA synthesis persists at least 24 h after training. In addition, intra-hippocampal injection of the Pol I specific inhibitor, CX-5461 prior to training, revealed that de novo rRNA synthesis is required for 24 h memory, but not for learning. Using qPCR to assess activity-dependent changes in gene expression, we found that of seven known rRNA expression variants (v-rRNAs), only one, v-rRNA IV, is significantly upregulated right after training. These data indicate that learning induced v-rRNAs are crucial for LTM, and constitute the first evidence that differential rRNA gene expression plays a role in memory.


Subject(s)
Gene Expression Regulation/genetics , Learning/physiology , Memory/physiology , RNA, Ribosomal/genetics , Animals , Hippocampus/metabolism , Memory Consolidation/physiology , Memory and Learning Tests , Memory, Long-Term , Mice , Neuronal Plasticity/genetics , Synapses/genetics , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...