Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemosphere ; 306: 135482, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35780984

ABSTRACT

Energy efficient CO2 separation using ultrathin smart membranes must possess efficient permeation performance, higher surface area and hydrostatic stability at industrially relevant high pressures. However, ultrathin membranes are susceptible to lower surface area, plasticization and swelling which reduces the performance at higher pressure under humidified conditions. This paper evaluates the routes for the potential intercalated effect of metal-induced microporous polymers (MMPs) dots into a cellulose-based polymer matrix to enhance promising properties, including the surface area, CO2 permeation performance, plasticization resistance and hydrostatic stability of ultrathin smart membranes at high pressure. The MMP dots-rooted smart membrane demonstrated 55 nm thickness of ultrathin selective layer with a higher surface of 220 cm2. The enhancement of CO2 permeability from 14.1 to 108.9 Barrer and CO2/CH4 ideal selectivity from 11.8 to 31.1 was observed due to the integration of MMP dots into the cellulose polymer. This result could be due to enhancement of nitrogen lone pair electron interactions with CO2 followed by amines group which improved the CO2 adsorption on the membrane surface. The MMP dots-rooted membrane demonstrated plasticization resistance up to 26 bar pressure, as compared to a pristine polymer membrane which is a percentage increase of 160% under humidified conditions. The resulting ultrathin smart membrane exhibited stable performance for a duration of 200 h under humidified conditions which confirmed the higher hydrostatic stability of the membrane. These findings confirmed the potential of MMP dots materials for the development of an industrial scale CO2 separation process using intercalated membranes.


Subject(s)
Environmental Restoration and Remediation , Polymers , Carbon Dioxide , Cellulose , Membranes, Artificial
2.
Ultrasonics ; 124: 106769, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35644098

ABSTRACT

Desorption processes are important part of all processes which involve utilization of solid adsorbents and are inherently energy-intensive. Here we investigate how those energy requirements can be reduced through the application of ultrasound for the activated alumina/water adsorption pair. To analyze the energy-saving characteristics of ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no ultrasound at the same total input power. Duplicate experiments were performed at three nominal frequencies of 28, 40 and 80 kHz to observe the influence of frequency on regeneration dynamics. Regarding moisture removal, the highest desorption was achieved at the lowest ultrasonic-to-total power ratio corresponding to about 27% reduction in energy consumption. A nonlinear inverse proportionality was observed between the effectiveness of ultrasound and the frequency at which it is applied. Regarding regeneration temperature, application of ultrasound at higher ultrasonic-to-total power ratios of 0.4 and 0.5 reduces the regeneration temperature without taking a toll on desorption. Based on the variation of desorption dynamics with ultrasonic power and frequency, a novel ultrasound-enhanced desorption mechanism involving adsorbate surface energy is proposed and a relationship between acoustically induced strain and adsorbate surface energy is introduced. An analytical model that describes the desorption process is developed based on the experimental data. From this a novel efficiency metric is proposed, which can be employed to justify incorporating ultrasound in regeneration and drying processes.


Subject(s)
Aluminum Oxide , Water , Adsorption , Desiccation , Regeneration
3.
Ultrason Sonochem ; 64: 105042, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32120241

ABSTRACT

The use of ultrasound to enhance the regeneration of zeolite 13X for efficient utilization of thermal energy was investigated as a substitute to conventional heating methods. The effects of ultrasonic power and frequency on the desorption of water from zeolite 13X were analyzed to optimize the desorption efficiency. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 or 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. To analyze the effect of ultrasonic frequency, identical experiments were performed at three nominal ultrasonic frequencies of ~28, 40 and 80 kHz. The experimental results showed that using ultrasound enhances the regeneration of zeolite 13X at all the aforementioned power ratios and frequencies without increasing the total input power. With regard to energy consumption, the highest energy-savings power ratio (0.25) resulted in a 24% reduction in required input energy and with an increase in ultrasonic power, i.e. an increase in acoustic-to-total power ratio, the effectiveness of applying ultrasound decreased drastically. At a power ratio of 0.2, the time required for regeneration was reduced by 23.8% compared to the heat-only process under the same experimental conditions. In terms of ultrasonic frequency, lower frequencies resulted in higher efficiency and energy savings, and it was concluded that the effect of ultrasonic radiation becomes more significant at lower ultrasonic frequencies. The observed inverse proportionality between the frequency and ultrasound-assisted desorption enhancement suggests that acoustic dissipation is not a significant mechanism to enhance mass transfer, but rather other mechanisms must be considered.

4.
Langmuir ; 31(48): 13191-200, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26445163

ABSTRACT

A simple synthesis route for gold-polymer composite particles with controlled structure (multipetal structure and dumbbell structure) is developed. It is intriguing to observe that by controlling the reaction time and size of gold nanoparticles (AuNPs), tetrapetal-, tripetal-, and dumbbell-structured gold-polystyrene composite are obtained via seeded polymerization. The average number of petals on a single AuNP increases with the AuNP diameter. These particles show potential applications as building blocks for advanced ordered and hierarchical supracolloidal materials. Further, with the incorporation of poly(N-isopropylacrylamide) (PNIPAm), "smart" thermoresponsive dumbbell-structured gold-PNIPAm/polystyrene composite particles are formed. Significant size variation is validated for particles with 83 and 91 wt % PNIPAm content around lower critical solution temperature (LCST), which results in self-modulated catalytic activity.

5.
J Colloid Interface Sci ; 425: 12-9, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24776658

ABSTRACT

Environmentally responsive polystyrene/poly (N-isopropylacrylamide)-gold composite particles are successfully synthesized via a Pickering emulsion polymerization method. It is found that the core-shell and asymmetric structured particles are simultaneously formed during the polymerization. Compared with the core-shell structured composite particles, the asymmetric particles have a higher thermo-responsiveness as a result of differences in morphology and formation mechanism. For asymmetric composite particles, an increase in N-isopropylacrylamide (NIPAAM) content leads to more significant size variation upon temperature changes. From rheology measurements, the viscosity of asymmetric particles suspension greatly decreases as temperature is increased above the lower critical solution temperature (LCST). The large size decrease in asymmetric composite particles gives rise to a significant scattering intensity increase, as a result of increased refractive index contrast between the PNIPAM content and surrounding water. The resulting size decrease also leads to tunable surface plasmon resonance properties.

6.
Langmuir ; 30(1): 75-82, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24308422

ABSTRACT

Core-shell structured polystyrene-gold composite particles are synthesized from one-step Pickering emulsion polymerization. The surface coverage of the core-shell composite particles is improved with increasing gold nanoparticle (AuNP) hydrophobicity and concentration. At high surface coverage, the AuNPs exhibit an ordered hexagonal pattern, likely due to electrostatic repulsion during the emulsion polymerization process. In addition to core-shell structured polystyrene-gold composite particles, an intriguing observation is that at low AuNP concentrations, asymmetric polystyrene-gold nanocomposite particles are simultaneously formed, where a single gold nanoparticle is attached onto each polystyrene particle. It is found that these asymmetric particles are formed via a "seeded-growth" mechanism. The core-shell and asymmetric polystyrene-gold composite particles prove to be efficient catalysts as they successfully catalyze the Rhodamine B reduction reaction with stable performance and show high recyclability as catalysts.

7.
Nanoscale Res Lett ; 6(1): 225, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21711750

ABSTRACT

Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 µm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

8.
Int J Biometeorol ; 54(1): 13-22, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19633989

ABSTRACT

A zero-dimensional energy balance model was previously developed to serve as a user-friendly mitigation tool for practitioners seeking to study the urban heat island (UHI) effect. Accordingly, this established model is applied here to show the relative effects of four common mitigation strategies: increasing the overall (1) emissivity, (2) percentage of vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of percentage increases by 5, 10, 15, and 20% from baseline values. In addition to modeling mitigation strategies, we present how the model can be utilized to evaluate human health vulnerability from excessive heat-related events, based on heat-related emergency service data from 2002 to 2006. The 24-h average heat index is shown to have the greatest correlation to heat-related emergency calls in the Phoenix (Arizona, USA) metropolitan region. The four modeled UHI mitigation strategies, taken in combination, would lead to a 48% reduction in annual heat-related emergency service calls, where increasing the albedo is the single most effective UHI mitigation strategy.


Subject(s)
Emergency Medical Services/statistics & numerical data , Environmental Exposure/statistics & numerical data , Heat Stress Disorders/epidemiology , Hot Temperature , Proportional Hazards Models , Urban Population/statistics & numerical data , Urbanization/trends , Arizona/epidemiology , Case-Control Studies , Cities/epidemiology , Ecosystem , Environmental Exposure/analysis , Humans , Incidence , Risk Assessment/methods , Risk Factors
9.
Nano Lett ; 8(5): 1410-6, 2008 May.
Article in English | MEDLINE | ID: mdl-18429638

ABSTRACT

The present study attempts to improve the ignition properties of diesel fuel by investigating the influence of adding aluminum and aluminum oxide nanoparticles to diesel. As part of this study, droplet ignition experiments were carried out atop a heated hot plate. Different types of fuel mixtures were used; both particle size (15 and 50 nm) as well as the volume fraction (0%, 0.1%, and 0.5%) of nanoparticles added to diesel were varied. For each type of fuel mixture, several droplets were dropped on the hot plate from a fixed height and under identical conditions, and the probability of ignition of that fuel was recorded based on the number of droplets that ignited. These experiments were repeated at several temperatures over the range of 688-768 degrees C. It was observed that the ignition probability for the fuel mixtures that contained nanoparticles was significantly higher than that of pure diesel.


Subject(s)
Aluminum/chemistry , Gasoline , Hot Temperature , Nanoparticles/chemistry
10.
Nano Lett ; 6(7): 1529-34, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16834444

ABSTRACT

The thermal conductivity, k, of nanoscale colloidal suspensions (also known as nanofluid), consisting of nanoparticles suspended in a base liquid, is much higher than the thermal conductivity of the base liquid at very small volume fractions of the nanoparticles. However, experimental results from various groups all across the world have shown various anomalies such as a peak in the enhancement of k with respect to nanoparticle size, an increase as well as a decrease in the ratio of k of these colloidal solutions with the k of the base fluid with increasing temperature, and a dependence of k on pH and time. In this paper, the aggregation kinetics of nanoscale colloidal solutions are combined with the physics of thermal transport to capture the effects of aggregation on k. Results show that the observed anomalies reported in experimental work can be well described by taking aggregation kinetics into account. Finally, we show that colloidal chemistry plays a significant role in deciding the k of colloidal nanosuspensions.


Subject(s)
Colloids , Nanotechnology , Flocculation , Kinetics , Models, Chemical , Models, Theoretical , Solutions/chemistry , Thermal Conductivity
11.
Phys Rev Lett ; 94(2): 025901, 2005 Jan 21.
Article in English | MEDLINE | ID: mdl-15698196

ABSTRACT

Researchers have been perplexed for the past five years with the unusually high thermal conductivity (k) of nanoparticle-laden colloidal solutions (nanofluids). Although various mechanisms and models have been proposed in the literature to explain the high k of these nanofluids, no concrete conclusions have been reached. Through an order-of-magnitude analysis of various possible mechanisms, we show that convection caused by the Brownian movement of these nanoparticles is primarily responsible for the enhancement in k of these colloidal nanofluids.

12.
Lab Chip ; 4(3): 201-8, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15159779

ABSTRACT

The microflow and stirring around paramagnetic particle microchains, referred to as microrotors, are modeled as a circular cylinder rotating about its radial axis at very low Reynolds number. Time scales for momentum transfer under these conditions are determined to be much smaller than those for boundary movement, hence a quasi-steady approximation can be used. The flow is derived at every instant from the case of a steady motion of a horizontally translating cylinder, with the rotation approximated to a series of differential incremental translations. A numerical simulation is used to determine the pathlines and material lines of virtual point fluid elements, which were analyzed to understand the behavior of the flow around the microrotor. The results indicate the flow to be unsteady, with chaotic advection observed in the system. The fluid motion is primarily two-dimensional, parallel to the rotational plane, with mixing limited to the immediate area around the rotating cylinder. Fluid layers, up to many cylinder diameters, in the axial direction experience the disturbance. Elliptic and star shaped pathlines, including periodic orbits, are observed depending on the fluid element's initial location. The trajectories and phase angles compare well with the experimental results, as well as with data from particle dynamics simulations. Material lines and streaklines display stretching and folding, which are indicative of the chaotic behavior and stirring characteristics of the system. The material lines have similar lengths for the same amount of rotation at different speeds, and the effect of rotational speeds appears to be primarily to change the time of mixing. The results are expected to help in the design of a particle microrotor based sensing technique.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Microfluidics , Models, Theoretical , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...