Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 94: 129456, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37633618

ABSTRACT

Disruption of the HBV capsid assembly process through small-molecule interaction with HBV core protein is a validated target for the suppression of hepatitis B viral replication and the development of new antivirals. Through combination of key structural features associated with two distinct series of capsid assembly modulators, a novel aminochroman-based chemotype was identified. Optimization of anti-HBV potency through generation of SAR in addition to further core modifications provided a series of related functionalized aminoindanes. Key compounds demonstrated excellent cellular potency in addition to favorable ADME and pharmacokinetic profiles and were shown to be highly efficacious in a mouse model of HBV replication. Aminoindane derivative AB-506 was subsequently advanced into clinical development.


Subject(s)
Antiviral Agents , Capsid Proteins , Capsid , Animals , Mice , Antiviral Agents/pharmacology , Disease Models, Animal , Structure-Activity Relationship , Hepatitis B virus/drug effects , Hepatitis B virus/metabolism
2.
RSC Med Chem ; 13(3): 343-349, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35434625

ABSTRACT

Disruption of the HBV viral life cycle with small molecules that prevent the encapsidation of pregenomic RNA and viral polymerase through binding to HBV core protein is a clinically validated approach to inhibiting HBV viral replication. Herein we report the further optimisation of clinical candidate AB-506 through core modification with a focus on increasing oral exposure and oral half-life. Maintenance of high levels of anti-HBV cellular potency in conjunction with improvements in pharmacokinetic properties led to multi-log10 reductions in serum HBV DNA following low, once-daily oral dosing for key analogues in a preclinical animal model of HBV replication.

3.
Antiviral Res ; 197: 105211, 2022 01.
Article in English | MEDLINE | ID: mdl-34826506

ABSTRACT

AB-506, a small-molecule inhibitor targeting the HBV core protein, inhibits viral replication in vitro (HepAD38 cells: EC50 of 0.077 µM, CC50 > 25 µM) and in vivo (HBV mouse model: ∼3.0 log10 reductions in serum HBV DNA compared to the vehicle control). Binding of AB-506 to HBV core protein accelerates capsid assembly and inhibits HBV pgRNA encapsidation. Furthermore, AB-506 blocks cccDNA establishment in HBV-infected HepG2-hNTCP-C4 cells and primary human hepatocytes, leading to inhibition of viral RNA, HBsAg, and HBeAg production (EC50 from 0.64 µM to 1.92 µM). AB-506 demonstrated activity across HBV genotypes A-H and maintains antiviral activity against nucleos(t)ide analog-resistant variants in vitro. Evaluation of AB-506 against a panel of core variants showed that T33N/Q substitutions results in >200-fold increase in EC50 values, while L30F, L37Q, and I105T substitutions showed an 8 to 20-fold increase in EC50 values in comparison to the wild-type. In vitro combinations of AB-506 with NAs or an RNAi agent were additive to moderately synergistic. AB-506 exhibits good oral bioavailability, systemic exposure, and higher liver to plasma ratios in rodents, a pharmacokinetic profile supporting clinical development for chronic hepatitis B.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Viral Core Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacokinetics , Cells, Cultured , Drug Evaluation, Preclinical , Female , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/virology , Humans , Mice , Rats , Virus Assembly/drug effects
4.
ACS Infect Dis ; 5(5): 725-737, 2019 05 10.
Article in English | MEDLINE | ID: mdl-30403127

ABSTRACT

Current approved nucleoside analogue treatments for chronic hepatitis B virus (HBV) infection are effective at controlling viral titer but are not curative and have minimal impact on the production of viral proteins such as surface antigen (HBsAg), the HBV envelope protein believed to play a role in maintaining the immune tolerant state required for viral persistence. Novel agents are needed to effect HBV cure, and reduction of HBV antigenemia may potentiate activation of effective and long-lasting host immune control. ARB-1740 is a clinical stage RNA interference agent composed of three siRNAs delivered using lipid nanoparticle technology. In a number of cell and animal models of HBV, ARB-1740 caused HBV RNA reduction, leading to inhibition of multiple elements of the viral life cycle including HBsAg, HBeAg, and HBcAg viral proteins as well as replication marker HBV DNA. ARB-1740 demonstrated pan-genotypic activity in vitro and in vivo, targeting three distinct highly conserved regions of the HBV genome, and effectively inhibited replication of nucleoside analogue-resistant HBV variants. Combination of ARB-1740 with a capsid inhibitor and pegylated interferon-alpha led to greater liver HBsAg reduction which correlated with more robust induction of innate immune responses in a human chimeric mouse model of HBV. The preclinical profile of ARB-1740 demonstrates the promise of RNA interference and HBV antigen reduction in treatment strategies driving toward a cure for HBV.


Subject(s)
Antiviral Agents/therapeutic use , Hepatitis B virus/drug effects , Hepatitis B, Chronic/drug therapy , RNA Interference , RNA, Small Interfering/therapeutic use , Animals , Genome, Viral , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA, Small Interfering/chemistry , Virus Replication/drug effects
5.
Article in English | MEDLINE | ID: mdl-29555628

ABSTRACT

AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 µM; EC90 = 0.33 to 1.32 µM) with no significant cytotoxicity (50% cytotoxic concentration > 10 µM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.


Subject(s)
Antiviral Agents/pharmacology , Capsid/metabolism , Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Virus Assembly/drug effects , Animals , Binding Sites , Cell Line, Tumor , DNA, Circular/metabolism , DNA, Viral/blood , DNA, Viral/metabolism , Female , Guanine/analogs & derivatives , Guanine/pharmacology , Hepatitis B virus/growth & development , Humans , Mice , Molecular Docking Simulation , Protein Binding , RNA, Viral/genetics
6.
J Infect Dis ; 193(12): 1650-7, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16703508

ABSTRACT

BACKGROUND: Ebola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs). METHODS: Four siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid-lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge. RESULTS: Treatment of guinea pigs with a pool of the L gene-specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge. CONCLUSIONS: Further development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats.


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/drug therapy , RNA Interference , RNA, Small Interfering/administration & dosage , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Disease Models, Animal , Ebolavirus/drug effects , Guinea Pigs , Interferon-alpha/blood , Interferon-beta/blood , Liposomes , Polyethyleneimine , RNA, Small Interfering/pharmacokinetics , RNA, Small Interfering/therapeutic use , RNA-Dependent RNA Polymerase/genetics , Survival Analysis , Viral Plaque Assay , Viremia
7.
Mol Ther ; 13(2): 328-37, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16275098

ABSTRACT

The systemic application of nucleic acid drugs requires delivery systems that overcome the poor pharmacokinetics, limited biodistribution, and inefficient uptake of nucleic acids. PEGylated liposomes show considerable promise because of their intrinsic ability to accumulate at disease sites and facilitate transfection of target cells. Unlike many viral vectors, PEGylated liposomes are generally considered to be nonimmunogenic. We have developed a PEGylated liposome for the systemic administration of plasmid DNA that achieves high levels of selective gene expression at distal tumor sites. Here we report that the in vivo efficacy and safety of these systems can be severely compromised following repeat administration. This phenomenon is characterized by a loss of disease site targeting, accelerated clearance from the blood, and acute hypersensitivity. These effects are fully attributable to a surprisingly robust, long-lived antibody response generated against polyethylene glycol (PEG) that results from the strong adjuvant effect of the plasmid payload. Importantly, immunogenicity may be substantially reduced by modifying the alkyl chain of the PEG-lipid conjugate, thereby allowing successful repeat dosing of the modified plasmid formulations without adverse side effects. Immunogenicity is a relevant concern for a number of nonviral delivery systems given the potent immunostimulatory properties of many nucleic acid drugs.


Subject(s)
Antibody Formation/immunology , Drug Delivery Systems , Hypersensitivity/immunology , Liposomes/immunology , Neoplasms, Experimental/immunology , Polyethylene Glycols/metabolism , Vaccines, DNA/immunology , Animals , Antibody Formation/drug effects , Drug Delivery Systems/methods , Liposomes/adverse effects , Male , Mice , Mice, Inbred A , Mice, Inbred BALB C , Mice, Inbred ICR , Platelet Activating Factor/physiology , Polyethylene Glycols/adverse effects , Vaccines, DNA/administration & dosage , Vaccines, DNA/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...