Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 76(3): 382-391, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30734843

ABSTRACT

Microbial enhanced oil recovery (MEOR) is a bio-based technology with economic and environmental benefits. The success of MEOR depends greatly on the types and characteristics of indigenous microbes. The aim of this study was to evaluate the feasibility of applying MEOR at Mae Soon Reservoir, an onshore oil reservoir experiencing a decline in its production rate. We investigated the capability of the reservoir's bacteria to produce biosurfactants, and evaluated the potentials of uncultured indigenous bacteria to support MEOR by means of prediction of MEOR-related functional genes, based on a set of metagenomic 16s rRNA gene data. The biosurfactant-producing bacteria isolated from the oil-bearing sandstones from the reservoir belonged to one species: Bacillus licheniformis, with one having the ability to decrease surface tension from 72 to 32 mN/m. Gene sequences responsible for biosurfactant (licA3), lipase (lipP1) and catechol 2,3-dioxygenase (C23O) were detected in these isolates. The latter two, and other genes encoding MEOR-related functional proteins such as enoyl-CoA hydratase and alkane 1-monooxygenase, were predicted in the bacterial communities residing the reservoir's sandstones. Exposure of these sandstones to nutrients, consisting of KNO3 and NaH2PO4, resulted in an increase in the proportions of some predicted functional genes. These results indicated the potentials of MEOR application at Mae Soon site. Using the approaches demonstrated in this study would also assist evaluation of the feasibility of applying MEOR in oil reservoirs, which may be enhanced by an appropriate nutrient treatment.


Subject(s)
Bacillus licheniformis/metabolism , Industrial Microbiology , Microbial Consortia , Oil and Gas Fields/microbiology , Surface-Active Agents/metabolism , Bacillus licheniformis/classification , Bacillus licheniformis/enzymology , Bacillus licheniformis/genetics , Conservation of Natural Resources , Genes, Bacterial , Nitrates/metabolism , Petroleum/microbiology , Phosphates/metabolism , Potassium Compounds/metabolism , RNA, Ribosomal, 16S/genetics
2.
PLoS One ; 13(11): e0198050, 2018.
Article in English | MEDLINE | ID: mdl-30496176

ABSTRACT

Microbial Enhanced Oil Recovery (MEOR) is a promising strategy to improve recovery of residual oil in reservoirs, which can be performed by promoting specific indigenous microorganisms. In this study, we performed preliminary evaluation of the possibility of conducting MEOR at Mae Soon reservoir, an onshore reservoir in Northern Thailand. The reservoir's physicochemical characteristics, including the characteristics of the wells, the oil-bearing sandstone cores, and the reservoir's produced water, were determined. The microbiological characteristics of the oil wells in the reservoir were also investigated by submerging the reservoir's sandstone core samples, obtained from 6 oil wells, in the reservoir's produced water and in the produced water added with inorganic nutrients (KNO3 and NaH2PO4). The uncultured bacteria in both treatments were determined, using tagged 16S rRNA gene amplicon with Ion Torrent Sequencing Analysis. The effects of inorganic nutrients and the reservoir's parameters on the bacterial communities were analysed. A total number of 16,828 OTUs were taxonomically classified into 89 classes and 584 genera. In the controls (sandstone cores submerged in the produced water), the dominant bacterial populations were related to Deinococcus-Thermus, and Betaproteobacteria; while in the nutrient treated samples, there was a marked increase in the relative abundance of Gammaproteobacteria in three samples. Thermus, Acinetobacter, and Pseudomonas were the most abundant genera, and these are potential microorganisms for MEOR. Analysis of correlations between physiochemical properties of the reservoir and bacterial genera, using spearman's correlation analysis, suggested that some of the reservoir's properties, especially of the well and the rock, could influence some bacterial genera. To our knowledge, this is the first demonstration of the effect of inorganic nutrients on alteration of bacterial communities attached to reservoir's rock, and how the bacterial, physical, and chemical properties of a reservoir were co-analysed to serve as a basis for designing a MEOR process.


Subject(s)
Betaproteobacteria/isolation & purification , DNA, Bacterial/isolation & purification , Gammaproteobacteria/isolation & purification , Oil and Gas Fields/microbiology , RNA, Ribosomal, 16S , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...