Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rice (N Y) ; 14(1): 52, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34110541

ABSTRACT

BACKGROUND: Vietnam possesses a vast diversity of rice landraces due to its geographical situation, latitudinal range, and a variety of ecosystems. This genetic diversity constitutes a highly valuable resource at a time when the highest rice production areas in the low-lying Mekong and Red River Deltas are enduring increasing threats from climate changes, particularly in rainfall and temperature patterns. RESULTS: We analysed 672 Vietnamese rice genomes, 616 newly sequenced, that encompass the range of rice varieties grown in the diverse ecosystems found throughout Vietnam. We described four Japonica and five Indica subpopulations within Vietnam likely adapted to the region of origin. We compared the population structure and genetic diversity of these Vietnamese rice genomes to the 3000 genomes of Asian cultivated rice. The named Indica-5 (I5) subpopulation was expanded in Vietnam and contained lowland Indica accessions, which had very low shared ancestry with accessions from any other subpopulation and were previously overlooked as admixtures. We scored phenotypic measurements for nineteen traits and identified 453 unique genotype-phenotype significant associations comprising twenty-one QTLs (quantitative trait loci). The strongest associations were observed for grain size traits, while weaker associations were observed for a range of characteristics, including panicle length, heading date and leaf width. CONCLUSIONS: We showed how the rice diversity within Vietnam relates to the wider Asian rice diversity by using a number of approaches to provide a clear picture of the novel diversity present within Vietnam, mainly around the Indica-5 subpopulation. Our results highlight differences in genome composition and trait associations among traditional Vietnamese rice accessions, which are likely the product of adaption to multiple environmental conditions and regional preferences in a very diverse country. Our results highlighted traits and their associated genomic regions that are a potential source of novel loci and alleles to breed a new generation of low input sustainable and climate resilient rice.

2.
Breed Sci ; 69(3): 439-446, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31598076

ABSTRACT

The green rice leafhopper (GRH), Nephotettix cincticeps Uhler, is a major insect pest of cultivated rice, Oryza sativa L., throughout the temperate regions of East Asia. GRH resistance had been reported in the wild species Oryza nivara but genetic basis of GRH resistance in wild rice accession has not been clarified. Here, we found a major QTL, qGRH4.2, on chromosome 4 conferred GRH resistance with 14.1 of the logarithm of odds (LOD) score explaining 67.6% of phenotypic variance in the BC1F1 population derived from a cross between the susceptible japonica cultivar 'Taichung 65' (T65) and O. nivara accession IRGC105715. qGRH4.2 has been identified as GRH6 between the markers RM5414 and C60248 in a BC3F2 population derived from two BC3F1 plants resistant to GRH. In a high-resolution mapping, the GRH6 region was delimited between the markers G6-c60k and 7L16f, and corresponded to an 31.2-kbp region of the 'Nipponbare' genome. Understanding the genetic basis of GRH resistance will facilitate the use of GRH resistance genes in marker-assisted breeding in rice.

SELECTION OF CITATIONS
SEARCH DETAIL
...