Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 60(1): 112-121, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36287642

ABSTRACT

The rapid development of insecticide resistance in malaria vectors threatens insecticide-based interventions. It is hypothesized that infection of insecticide-resistant vectors with Plasmodium parasites increases their vulnerability to insecticides, thus assuring the effectiveness of insecticide-based strategies for malaria control. Nonetheless, there is limited field data to support this. We investigated the effect of the Plasmodium falciparum infection on the susceptibility of Anopheles gambiae s.l. and Anopheles funestus to pyrethroids in south-eastern (Kilombero) and north-western (Muleba), Tanzania. The wild-collected mosquitoes were tested against 0.05% deltamethrin and 0.75% permethrin, then assessed for sporozoite rate and resistant gene (kdr) mutations. All Anopheles gambiae s.l. from Kilombero were An. arabiensis (Patton, 1905) while those from Muleba were 87% An. gambiae s.s (Giles, 1902) and 13% An. Arabiensis. High levels of pyrethroid resistance were observed in both areas studied. The kdr mutation was only detected in An. gambiae s.s. at the frequency of 100% in survivors and 97% in dead mosquitoes. The P. falciparum sporozoite rates were slightly higher in susceptible than in resistant mosquitoes. In Muleba, sporozoite rates in An. gambiae s.l. were 8.1% and 6.4% in dead mosquitoes and survivors, respectively (SRR = 1.28, p = 0.19). The sporozoite rates in Kilombero were 1.3% and 0.7% in the dead and survived mosquitoes, respectively (sporozoite rate ratio (SRR) = 1.9, p = 0.33). In An. funestus group sporozoite rates were 6.2% and 4.4% in dead and survived mosquitoes, respectively (SRR = 1.4, p = 0.54). These findings indicate that insecticides might still be effective in malaria control despite the rapid development of insecticide resistance in malaria vectors.


Subject(s)
Anopheles , Insecticides , Malaria, Falciparum , Malaria , Pyrethrins , Animals , Insecticides/pharmacology , Plasmodium falciparum , Tanzania , Mosquito Vectors , Pyrethrins/pharmacology , Insecticide Resistance/genetics
2.
J Parasitol Res ; 2022: 6313773, 2022.
Article in English | MEDLINE | ID: mdl-35761826

ABSTRACT

Diet quality is of paramount importance for egg batch size, longevity, and mortality of vector mosquitoes. Oviposition site presence and absence assumed to be dry season means a lot to the survivorship and mortality of most anthropophilic malaria vectors in sub-Saharan Africa. This study has assessed the effect of different diets and oviposition-site deprivation (OSD) on survivorship, longevity, and mortality of An. gambiae s.s. To determine the effect of diet and OSD on mortality, gonotrophic dissociation rates, longevity, and survivorship, six treatments were employed: Blood Fed with Oviposition (BFO), Blood Fed without oviposition (BF), Blood and Sugar Fed with Oviposition (BSFO), Blood and Sugar Fed without oviposition (BSF), Sugar Fed with Oviposition (SFO), and Sugar Fed without oviposition (SF). Mortality and gonotrophic dissociation were monitored daily. This study found that female mosquitoes offered blood meals with sugar solution and oviposition deprivation survived longer than those deprived of oviposition deprivation. Similarly, female mosquitoes fed on blood and provided with oviposition deprivation lived longer than those without oviposition deprivation. The gonotrophic dissociation rates were found to be lower in groups provided with oviposition deprivation. Our results show that OSD has a direct impact on the survivorship, gonotrophic dissociation rate, and longevity of the malaria anthropophilic vector, An. gambiae s.s., regardless of the diet.

3.
J Trop Med ; 2020: 8017187, 2020.
Article in English | MEDLINE | ID: mdl-33061994

ABSTRACT

BACKGROUND: Insecticide resistance among the vector population is the main threat to existing control tools available. The current vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding behaviour, and egg batch size of Anopheles gambiae s.l. METHOD: The larval sampling was conducted in rice fields using a standard dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated permethrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and egg batch size were monitored for all survivors and control. RESULTS: The results revealed that mortality rates declined by 52.5 and 59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was significantly higher than resistant colony (t = 2.789, df = 21, P=0.011). Additionally, the susceptible An. gambiae s.s. laid more eggs than the resistant An.gambiae s.l. colony (Χ2 = 1366, df = 1, P ≤ 0.05). CONCLUSION: It can, therefore, be concluded that the wild An. gambiae s.l. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.

4.
Malar J ; 19(1): 318, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32873302

ABSTRACT

BACKGROUND: Mosquitoes use odours to find energy resources, blood hosts and oviposition sites. While these odour sources are normally spatio-temporally segregated in a mosquito's life history, here this study explored to what extent a combination of flower- and human-mimicking synthetic volatiles would attract the malaria vector Anopheles gambiae sensu stricto (s.s.) METHODS: In the laboratory and in large (80 m2) outdoor cages in Tanzania, nulliparous and parous A. gambiae s.s. were offered choices between a blend of human skin volatiles (Skin Lure), a blend of floral volatiles (Vectrax), or a combination thereof. The blends consisted of odours that induce distinct, non-overlapping activation patterns in the olfactory circuitry, in sensory neurons expressing olfactory receptors (ORs) and ionotropic receptors (IRs), respectively. Catches were compared between treatments. RESULTS: In the laboratory nulliparous and parous mosquitoes preferred skin odours and combinations thereof over floral odours. However, in semi-field settings nulliparous were significantly more caught with floral odours, whereas no differences were observed for parous females. Combining floral and human volatiles did not augment attractiveness. CONCLUSIONS: Nulliparous and parous A. gambiae s.s. are attracted to combinations of odours derived from spatio-temporally segregated resources in mosquito life-history (floral and human volatiles). This is favourable as mosquito populations are comprised of individuals whose nutritional and developmental state steer them to diverging odours sources, baits that attract irrespective of mosquito status could enhance overall effectiveness and use in monitoring and control. However, combinations of floral and skin odours did not augment attraction in semi-field settings, in spite of the fact that these blends activate distinct sets of sensory neurons. Instead, mosquito preference appeared to be modulated by blood meal experience from floral to a more generic attraction to odour blends. Results are discussed both from an odour coding, as well as from an application perspective.


Subject(s)
Anopheles/physiology , Chemotaxis , Flowers/chemistry , Odorants/analysis , Skin/chemistry , Volatile Organic Compounds/metabolism , Animals , Feeding Behavior , Female , Humans , Tanzania
5.
Malar J ; 19(1): 52, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32000782

ABSTRACT

BACKGROUND: Zooprophylaxis is a technique in which blood-seeking vectors are diverted to non-host animals in order to lower blood-feeding rates on human hosts. The success of this technique depends on the host preference of the vector being targeted. The objective of this study was to evaluate the effect of L-lactic acid (Abate) to divert malaria mosquito, Anopheles gambiae from feeding on human host. METHODS: A 14-month-old female goat was treated with Abate, a formulation incorporating L-lactic acid into a slow-release matrix. This formulation was applied on the fur of the goat's back and neck. The treated animal was then presented to Anopheles gambiae sensu stricto (s.s.) as a prospective host in a semi-field environment ('mosquito sphere') together with either an untreated animal or a human. The number of mosquitoes caught to each host choice offered were compared. RESULTS: Goat treated with the L-lactic acid formulation successfully attracted An. gambiae at higher rates (70.2%) than the untreated ones (29.8%). Furthermore, An. gambiae s.s. were attracted to a treated goat at an equivalent degree (47.3%) as to their preferred human host (52.7%), even when the preferred host was present in the same environment. CONCLUSIONS: The findings indicate that human host-seeking mosquitoes can be diverted into feeding on non-preferred hosts despite the close proximity of their favoured host, hence reducing chances for the transmission of blood-borne parasites.


Subject(s)
Anopheles/physiology , Insecticides , Lactic Acid , Malaria/prevention & control , Mosquito Vectors/physiology , Temefos , Animals , Feeding Behavior/drug effects , Female , Goats , Humans , Malaria/transmission , Rabbits
6.
BMC Public Health ; 19(1): 1456, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31694595

ABSTRACT

BACKGROUND: Pesticides remain the mainstay for the control of agricultural pests and disease vectors. However, their indiscriminate use in agriculture has led to development of resistance to both crop pests and disease vectors. This threatens to undermine the success gained through the implementation of chemical based vector control programs. We investigated the practices of farmers with regard to pesticide usage in the vegetable growing areas and their impact on susceptibility status of An. gambiae s.l. METHODS: A stratified multistage sampling technique using the administrative structure of the Tanzanian districts as sampling frame was used. Wards, villages and then participants with farms where pesticides are applied were purposively recruited at different stages of the process, 100 participants were enrolled in the study. The same villages were used for mosquito larvae sampling from the farms and the surveys were complimented by the entomological study. Larvae were reared in the insectary and the emerging 2-3 days old female adults of Anopheles gambiae s.l were subjected to susceptibility test. RESULTS: Forty eight pesticides of different formulations were used for control of crop and Livestock pests. Pyrethroids were the mostly used class of pesticides (50%) while organophosphates and carbamates were of secondary importance. Over 80% of all farmers applied pesticides in mixed form. Susceptibility test results confirmed high phenotypic resistance among An. gambiae populations against DDT and the pyrethroids (Permethrin-0.75%, Cyfluthrin-0.15%, Deltametrin-0.05% and Lambdacyhalothrin-0.05%) with mortality rates 54, 61, 76 and 71%, respectively. Molecular analysis showed An. arabiensis as a dominant species (86%) while An. gambiae s.s constituted only 6%. The kdr genes were not detected in all of the specimens that survived insecticide exposures. CONCLUSION: The study found out that there is a common use of pyrethroids in farms, Livestocks as well as in public health. The study also reports high phenotypic resistance among An. gambiae s.l against most of the pyrethroids tested. The preponderance of pyrethroids in agriculture is of public health concern because this is the class of insecticides widely used in vector control programs and this calls for combined integrated pest and vector management (IPVM).


Subject(s)
Agriculture/statistics & numerical data , Endemic Diseases/prevention & control , Insecticide Resistance , Insecticides/pharmacology , Malaria/prevention & control , Mosquito Vectors/drug effects , Animals , Anopheles/drug effects , Farmers/statistics & numerical data , Humans , Larva/drug effects , Malaria/epidemiology , Tanzania/epidemiology
7.
Malar J ; 18(1): 102, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30914051

ABSTRACT

BACKGROUND: Malaria still claims substantial lives of individuals in Tanzania. Insecticide-treated nets (ITNs) and indoor residual spray (IRS) are used as major malaria vector control tools. These tools are facing great challenges from the rapid escalating insecticide resistance in malaria vector populations. This review presents the information on the dynamics and monitoring of insecticide resistance in malaria vectors in mainland Tanzania since 1997. The information is important to policy-makers and other vector control stakeholders to reflect and formulate new resistance management plans in the country. METHODS: Reviewed articles on susceptibility and mechanisms of resistance in malaria vectors to insecticides across mainland Tanzania were systematically searched from the following databases: PubMed, Google scholar, HINARI and AGORA. The inclusion criteria were articles published between 2000 and 2017, reporting susceptibility of malaria vectors to insecticides, mechanisms of resistance in the mainland Tanzania, involving field collected adult mosquitoes, and mosquitoes raised from the field collected larvae. Exclusion criteria were articles reporting insecticide resistance in larval bio-assays, laboratory strains, and unpublished data. Reviewed information include year of study, malaria vectors, insecticides, and study sites. This information was entered in the excel sheet and analysed. RESULTS: A total of 30 articles met the selection criteria. The rapid increase of insecticide resistance in the malaria vectors across the country was reported since year 2006 onwards. Insecticide resistance in Anopheles gambiae sensu lato (s.l.) was detected in at least one compound in each class of all recommended insecticide classes. However, the Anopheles funestus s.l. is highly resistant to pyrethroids and DDT. Knockdown resistance (kdr) mechanism in An. gambiae s.l. is widely studied in the country. Biochemical resistance by detoxification enzymes (P450s, NSE and GSTs) in An. gambiae s.l. was also recorded. Numerous P450s genes associated with metabolic resistance were over transcribed in An. gambiae s.l. collected from agricultural areas. However, no study has reported mechanisms of insecticide resistance in the An. funestus s.l. in the country. CONCLUSION: This review has shown the dynamics and monitoring of insecticide resistance in malaria vector populations across mainland Tanzanian. This highlights the need for devising improved control approaches of the malaria vectors in the country.


Subject(s)
Anopheles/drug effects , Anopheles/growth & development , Insecticide Resistance , Mosquito Vectors/drug effects , Mosquito Vectors/growth & development , Animals , Malaria/transmission , Tanzania
8.
Infect Dis Poverty ; 6(1): 102, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28595653

ABSTRACT

BACKGROUND: Aedes aegypti (Diptera: Culicidae) is the main vector of the dengue virus globally. Dengue vector control is mainly based on reducing the vector population through interventions, which target potential breeding sites. However, in Tanzania, little is known about this vector's habitat productivity and insecticide susceptibility status to support evidence-based implementation of control measures. The present study aimed at assessing the productivity and susceptibility status of A. aegypti mosquitoes to pyrethroid-based insecticides in Dar es Salaam, Tanzania. METHODS: An entomological assessment was conducted between January and July 2015 in six randomly selected wards in Dar es Salaam, Tanzania. Habitat productivity was determined by the number of female adult A. aegypti mosquitoes emerged per square metre. The susceptibility status of adult A. aegypti females after exposure to 0.05% deltamethrin, 0.75% permethrin and 0.05% lambda-cyhalothrin was evaluated using the standard WHO protocols. Mortality rates were recorded after 24 h exposure and the knockdown effect was recorded at the time points of 10, 15, 20, 30, 40, 50 and 60 min to calculate the median knockdown times (KDT50 and KDT95). RESULTS: The results suggest that disposed tyres had the highest productivity, while water storage tanks had the lowest productivity among the breeding habitats Of A. aegypti mosquitoes. All sites demonstrated reduced susceptibility to deltamethrin (0.05%) within 24 h post exposure, with mortalities ranging from 86.3 ± 1.9 (mean ± SD) to 96.8 ± 0.9 (mean ± SD). The lowest and highest susceptibilities were recorded in Mikocheni and Sinza wards, respectively. Similarly, all sites demonstrated reduced susceptibility permethrin (0.75%) ranging from 83.1 ± 2.1% (mean ± SD) to 96.2 ± 0.9% (mean ± SD), in Kipawa and Sinza, respectively. Relatively low mortality rates were observed in relation to lambda-cyhalothrin (0.05%) at all sites, ranging from 83.1 ± 0.7 (mean ± SD) to 86.3 ± 1.4 (mean ± SD). The median KDT50 for deltamethrin, permethrin and lambda-cyhalothrin were 24.9-30.3 min, 24.3-34.4 min and 26.7-32.8 min, respectively. The KDT95 were 55.2-90.9 min for deltamethrin, 54.3-94.6 min for permethrin and 64.5-69.2 min for lambda-cyhalothrin. CONCLUSIONS: The productive habitats for A. aegypti mosquitoes found in Dar es Salaam were water storage containers, discarded tins and tyres. There was a reduced susceptibility of A. aegypti to and emergence of resistance against pyrethroid-based insecticides. The documented differences in the resistance profiles of A. aegypti mosquitoes warrants regular monitoring the pattern concerning resistance against pyrethroid-based insecticides and define dengue vector control strategies.


Subject(s)
Aedes/drug effects , Ecosystem , Insecticide Resistance , Insecticides/pharmacology , Pyrethrins/pharmacology , Animals , Cities , Female , Nitriles/pharmacology , Permethrin/pharmacology , Tanzania
9.
Trop Med Int Health ; 22(4): 388-398, 2017 04.
Article in English | MEDLINE | ID: mdl-28168834

ABSTRACT

OBJECTIVE: To assess the susceptibility status of malaria vectors to pyrethroids and dichlorodiphenyltrichloroethane (DDT), characterise the mechanisms underlying resistance and evaluate the role of agro-chemical use in resistance selection among malaria vectors in Sengerema agro-ecosystem zone, Tanzania. METHODS: Mosquito larvae were collected from farms and reared to obtain adults. The susceptibility status of An. gambiae s.l. was assessed using WHO bioassay tests to permethrin, deltamethrin, lambdacyhalothrin, etofenprox, cyfluthrin and DDT. Resistant specimens were screened for knock-down resistance gene (kdr), followed by sequencing both Western and Eastern African variants. A gas chromatography-mass spectrophotometer (GC-MS) was used to determine pesticide residues in soil and sediments from mosquitoes' breeding habitats. RESULTS: Anopheles gambiae s.l. was resistant to all the insecticides tested. The population of Anopheles gambiae s.l was composed of Anopheles arabiensis by 91%. The East African kdr (L1014S) allele was found in 13 of 305 specimens that survived insecticide exposure, with an allele frequency from 0.9% to 50%. DDTs residues were found in soils at a concentration up to 9.90 ng/g (dry weight). CONCLUSION: The observed high resistance levels of An. gambiae s.l., the detection of kdr mutations and pesticide residues in mosquito breeding habitats demonstrate vector resistance mediated by pesticide usage. An integrated intervention through collaboration of agricultural, livestock and vector control units is vital.


Subject(s)
Anopheles/drug effects , DDT/pharmacology , Insect Vectors/drug effects , Insecticide Resistance , Malaria/transmission , Pesticides/pharmacology , Pyrethrins/pharmacology , Agriculture , Animals , Anopheles/genetics , Ecosystem , Genes, Insect , Humans , Insect Vectors/genetics , Insecticides/pharmacology , Mutation , Nitriles/pharmacology , Permethrin/pharmacology , Pesticide Residues , Soil/chemistry , Species Specificity , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...