Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 866: 161270, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36603630

ABSTRACT

Oil spill risk and impact assessments rely on time-dependent toxicity models to predict the hazard of the constituents that comprise crude oils and petroleum substances. Dissolved aromatic compounds (ACs) are recognized as a primary driver of aquatic toxicity in surface spill exposure scenarios. However, limited time-dependent toxicity data are available for different classes of ACs to calibrate such models. This study examined the acute toxicity of 14 ACs and 3 binary AC mixtures on Artemia franciscana nauplii at 25 °C. Toxicity tests for 3 ACs were also conducted at 15 °C to evaluate the role of temperature on toxicity. The ACs investigated represented parent and alkylated homocyclic and nitrogen-, sulfur- and oxygen-containing heterocyclic structures with octanol-water partition coefficients (log Kow) ranging from 3.2 to 6.6. Passive dosing was used to expose and maintain concentrations in toxicity tests which were confirmed using fluorometry, and independently validated for 6 ACs using GC-MS analysis. Mortality was assessed at 6, 24, and 48 h to characterize the time course of toxicity. No mortality was observed for the most hydrophobic AC tested, 7,12-dimethylbenz[a]anthracene, due to apparent water solubility constraints. Empirical log LC50 s for the remaining ACs were fit to a linear regression with log Kow to derive a critical target lipid body burden (CTLBB) based on the target lipid model. The calculated 48 h CTLBB of 47.1 ± 8.1 µmol/g octanol indicates that Artemia nauplii exhibited comparable sensitivity to other crustaceans. A steep concentration-response was found across all compounds as evidenced by a narrow range (1.0-3.1) in the observed LC50 /LC10 ratio. Differences in toxicokinetics were noted, and no impacts of temperature-dependence of AC toxicity were found. Toxicity data obtained for individual ACs yielded acceptable predictions of observed binary AC mixture toxicity. Results from this study advance toxicity models used in oil spill assessments.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Polycyclic Aromatic Hydrocarbons/analysis , Artemia , Petroleum Pollution/analysis , Calibration , Water/chemistry , Petroleum/analysis , Lipids , Water Pollutants, Chemical/analysis
2.
Dev Dyn ; 251(11): 1798-1815, 2022 11.
Article in English | MEDLINE | ID: mdl-35710880

ABSTRACT

BACKGROUND: The vitamin A derivative all-trans retinoic acid (RA) regulates early stages of inner ear development. As the early disruption of the RA pathway results in profound mispatterning of the developing inner ear, this confounds analyses of specific roles in later stages. Therefore, we used the temporal-specific exposure of all-trans RA or diethylaminobenzaldehyde to evaluate RA functions in late otic development. RESULTS: Perturbing late RA signaling causes behavioral defects analogous to those expected in larvae suffering from vestibular dysfunction. These larvae also demonstrate malformations of the semi-circular canals, as visualized through (a) use of the transgenic strain nkhspdmc12a, a fluorescent reporter expressed in otic epithelium; and (b) injection of the fluorescent lipophilic dye DiI. We also noted the altered expression of genes encoding ECM proteins or modifying enzymes. Other malformations of the inner ear observed in our work include the loss or reduced size of the utricular and saccular otoliths, suggesting a role for RA in otolith maintenance. CONCLUSION: Our work has identified a previously undescribed late phase of RA activity in otic development, demonstrating that vestibular defects observed in human patients in relation to perturbed RA signaling are not solely due to its early disruption in otic development.


Subject(s)
Tretinoin , Zebrafish , Animals , Humans , Zebrafish/genetics , Otolithic Membrane , Embryonic Development , Semicircular Canals , Morphogenesis
3.
Sci Total Environ ; 770: 144745, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736363

ABSTRACT

Diluted bitumen, also known as dilbit, is transported by rail and pipeline across Canada and the United States. Due to the fewer number of studies characterizing the toxicity of dilbit, a dilbit spill poses an unknown risk to freshwater aquatic ecosystems. In the following study, we compared the impact of early-life exposure to conventional and unconventional crude oils on the optomotor behavior, reproductive success, and transgenerational differences in gene expression in zebrafish and their progeny. For exposures, water accommodated fractions (WAFs) of crude oil were generated using a 1:1000 oil to water ratio for 3 different crudes; mixed sweet blend (MSB), medium sour composite (MSC) and dilbit. All three oils generated unique volatile organic compound (VOC) and polycyclic aromatic compound (PAC) profiles. Of the WAFs tested, only dilbit decreased the eye size of 2 dpf larvae, and only MSB exposed larvae had an altered behavioral response to a visual simulation of a predator. Early-life exposure to crude oil had no lasting impact on reproductive success of adult fish; however, each oil had unique impacts on the basal gene expression of the somatically exposed offspring. In this study, the biological effects differed between each of the oils tested, which implied chemical composition plays a critical role in determining the sublethal toxicity of conventional and unconventional crude oils in freshwater ecosystems.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Canada , Ecosystem , Genetic Markers , Petroleum/analysis , Petroleum/toxicity , Petroleum Pollution/adverse effects , Water Pollutants, Chemical/toxicity , Zebrafish
4.
Sci Total Environ ; 750: 141707, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33182172

ABSTRACT

Ultraviolet (UV) filters are compounds utilized in many manufacturing processes and personal care products such as sunscreen to protect against UV-radiation. These highly lipophilic compounds are emerging contaminants of concern in aquatic environments due to their previously observed potential to bioaccumulate and exert toxic effects in marine ecosystems. Currently, research into the toxic effects of UV filter contamination of freshwater ecosystems is lacking, thus the present study sought to model the effects of acute and chronic developmental exposures to UV filters avobenzone, oxybenzone and octocrylene as well as a mixture of these substances in the freshwater invertebrate, Daphnia magna, at environmentally realistic concentrations. Median 48-hour effect and lethal concentrations were determined to be in the low mg/L range, with the exception of octocrylene causing 50% immobilization near environmental concentrations. 48-hour acute developmental exposures proved to behaviourally impair daphnid phototactic response; however, recovery was observed following a 19-day post-exposure period. Although no physiological disruptions were detected in acutely exposed daphnids, delayed mortality was observed up to seven days post-exposure at 200 µg/L of avobenzone and octocrylene. 21-day chronic exposure to 7.5 µg/L octocrylene yielded complete mortality within 7 days, while sublethal chronic exposure to avobenzone increased Daphnia reproductive output and decreased metabolic rate. 2 µg/L oxybenzone induced a 25% increase in metabolic rate of adult daphnids, and otherwise caused no toxic effects at this dose. These data indicate that UV filters can exert toxic effects in freshwater invertebrates, therefore further study is required. It is clear that the most well-studied UV filter, oxybenzone, may not be the most toxic to Daphnia, as both avobenzone and octocrylene induced behavioural and physiological disruption at environmentally realistic concentrations.


Subject(s)
Daphnia , Water Pollutants, Chemical , Animals , Ecosystem , Sunscreening Agents/toxicity , Ultraviolet Rays/adverse effects , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Ecotoxicol Environ Saf ; 205: 111289, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32949839

ABSTRACT

The Deepwater Horizon oil spill released 3.19 million barrels of crude oil into the Gulf of Mexico, making it the largest oil spill in U.S. history. Weathering and the application of dispersants can alter the solubility of compounds within crude oil, thus modifying the acute toxicity of the crude oil to aquatic life. The primary aim of our study was to determine the lasting impact of early-life stage sheepshead minnow (Cyprinodon variegatus variegatus) exposure to weathered, unweathered and dispersed crude oil on prey capture, male aggression, novel object interaction and global DNA methylation. Embryos were exposed from 1 to 10 dpf to water accommodations of crude oil and were raised to adulthood in artificial seawater. Our results suggest exposure to crude oil did not result in lasting impairment of complex behavioral responses of male sheepshead minnow. Exposure to dispersed weathered oil, however, decreased border dwelling in response to a novel object (i.e. decreased anxiety). Principal component analysis revealed that exposure to weathered oil had no overarching effect, but that unweathered crude oil increased variability in exploratory behaviors but decreased variability in anxiety-associated behaviors. Further work is needed to understand the effects of oil exposure on fish behavior and the potential ecological impact of subtle behavioral changes in fishes.


Subject(s)
Behavior, Animal/drug effects , Killifishes/physiology , Larva/drug effects , Petroleum Pollution/adverse effects , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , DNA Methylation/drug effects , Ecology , Gulf of Mexico , Killifishes/genetics , Larva/genetics , Larva/physiology , Male , Seawater/chemistry , Weather
6.
Sci Total Environ ; 693: 133611, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31634996

ABSTRACT

Exposure to oil sands process-affected water (OSPW), a by-product of Canadian oil sands mining operations, can cause both acute and chronic adverse effects in aquatic life. Ozonation effectively degrades naphthenic acids in OSPW, mitigating some of the toxicological effects of exposure. In this study we examined the effect of developmental exposure to raw and ozonated OSPW had on the breeding success, prey capture, and alarm cue response in fish months/years after exposure and the transgenerational effect exposure had on gene expression, global DNA methylation, and larval basal activity. Exposure to raw and ozonated OSPW had no effect on breeding success, and global DNA methylation. Exposure altered the expression of vtg and nkx2.5 in the unexposed F1 generation. Exposure to both raw and ozonated OSPW had a transgenerational impact on larval activity levels, anxiety behaviors, and maximum swim speed compared to the control population. Prey capture success was unaffected, however, the variability in the behavioral responses to the introduction of prey was decreased. Fish developmentally exposed to either treatment were less active before exposure and did not have an anxiety response to the alarm cue hypoxanthine-3-n-oxide. Though ozonation was able to mitigate some of the effects of OSPW exposure, further studies are needed to understand the transgenerational effects and the implications of exposure on complex fish behaviors.


Subject(s)
Oil and Gas Fields , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Biodegradation, Environmental , Canada , Carboxylic Acids , Invertebrates , Larva , Mining , Ozone , Zebrafish
7.
Sci Total Environ ; 647: 1148-1157, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180323

ABSTRACT

The Deepwater Horizon (DWH) oil spill was the biggest in US history and released 3.19 million barrels of light crude oil into the Gulf of Mexico. In this study, we compared the toxicity of water accommodated fractions (WAFs) of naturally weathered crude oils, source oil, and source oil with dispersant mixtures and their effects on developing sheepshead minnow and zebrafish. Although a freshwater fish, zebrafish has been used as a model for marine oil spills owing to the molecular and genetic tools available and their amenability to lab care. Our study not only aimed to determine the effect of crude oil on early life stages of these two fish species, but also aimed to determine whether dissolved crude oil constituents were similar in fresh and saltwater, and if freshwater fish might be a suitable model to study marine spills. Weathering and dispersant had similar effects on WAF composition in both fresh and saltwater, except that the saltwater source oil + dispersant WAF had markedly higher PAH levels than the freshwater equivalent. WAF exposure differentially affected survival, as the LC50 values in %WAF for the zebrafish and sheepshead minnow exposures were 44.9% WAF (95% confidence interval (C.I.) 42.1-47.9) and 16.8% WAF (95% C.I. 13.7-20.5); respectively. Exposure increased heart rate of zebrafish embryos, whereas in sheepshead, source oil exposure had the opposite effect. WAF exposure altered mRNA expression of biotransformation makers, vitellogenin and neurodevelopment genes in both species. Muscle deformations were only found in oil-exposed zebrafish. This is one of the most comprehensive studies to date on crude oil toxicity, and highlights the species-specific differences in cardiotoxicity, estrogenic effects, biotransformation enzyme induction and potential neurotoxicity of crude oil exposure.


Subject(s)
Fishes/physiology , Petroleum/toxicity , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicity , Animals , Fresh Water/chemistry , Gulf of Mexico , Petroleum/analysis , Petroleum Pollution , Seawater/chemistry , Surface-Active Agents/analysis , Water Pollutants, Chemical/analysis
8.
Environ Pollut ; 241: 959-968, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30029330

ABSTRACT

With the ever-increasing amounts of oil sands process-affected water (OSPW) accumulating from Canada's oil sands operations, its eventual release must be considered. As OSPW has been found to be both acutely and chronically toxic to aquatic organisms, remediation processes must be developed to lower its toxicity. Ozone treatment is currently being studied as a tool to facilitate the removal of organic constituents associated with toxicity. Biomarkers (e.g. gene expression) are commonly used when studying the effects of environmental contaminants, however, they are not always indicative of adverse effects at the whole organism level. In this study, we assessed the effects of OSPW exposure on developing zebrafish by linking gene expression to relevant cellular and whole organism level endpoints. We also investigated whether or not ozone treatment decreased biomarkers and any associated toxicity observed from OSPW exposure. The concentrations of classical naphthenic acids in the raw and ozonated OSPW used in this study were 16.9 mg/L and 0.6 mg/L, respectively. Ozone treatment reduced the total amount of naphthenic acids (NAs) in the OSPW sample by 92%. We found that exposure to both raw and ozonated OSPW had no effect on the survival of zebrafish embryos. The expression levels of biotransformation genes CYP1A and CYP1B were induced by raw OSPW exposure, with CYP1B being more highly expressed than CYP1A. In contrast, ozonated OSPW exposure did not increase the expression of CYP1A and only slightly induced CYP1B. A decrease in cardiac development and function genes (NKX2.5 and APT2a2a) was not associates with large changes in heart rate, arrhythmia or heart size. We did not find any indications of craniofacial abnormalities or of increased occurrence of apoptotic cells. Overall, our study found that OSPW was not overtly toxic to zebrafish embryos.


Subject(s)
Ozone/chemistry , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Biodegradation, Environmental , Canada , Carboxylic Acids , Gene Expression/drug effects , Oil and Gas Fields , Zebrafish/anatomy & histology , Zebrafish/metabolism
9.
Chemosphere ; 206: 405-413, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29758497

ABSTRACT

Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b.


Subject(s)
Oil and Gas Fields/chemistry , Ozone/chemistry , Water Pollutants, Chemical/toxicity , Zebrafish/embryology , Animals
10.
Environ Sci Technol ; 50(11): 6091-8, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27176092

ABSTRACT

To facilitate pipeline transport of bitumen, it is diluted with natural gas condensate, and the resulting mixture, "dilbit", differs greatly in chemical composition to conventional crude oil. Despite the risk of accidental dilbit release, the effects of dilbit on aquatic animals are largely unknown. In this study, we compared the toxicity of water accommodated fractions (WAFs) of dilbit and two conventional crude oils, medium sour composite and mixed sweet blend, to developing zebrafish. Mortality and pericardial edema was lowest in dilbit WAF-exposed embryonic zebrafish but yolk sac edema was similar in all exposures. Shelter-seeking behavior was decreased by dilbit and conventional crude WAF exposures, and continuous swimming behavior was affected by all tested WAF exposures. Regardless of WAF type, monoaromatic hydrocarbon content (largely made up of benzene, toluene, ethylbenzene, and xylene (BTEX)) was a more accurate predictor of lethality and pericardial edema than polycyclic aromatic hydrocarbon (PAH) content. Our results suggest that the toxicity of dilbit to a model fish is less than or similar to that of conventional crudes.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Petroleum , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons
SELECTION OF CITATIONS
SEARCH DETAIL
...