Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Recognit ; 24(4): 619-30, 2011.
Article in English | MEDLINE | ID: mdl-21472813

ABSTRACT

Molecular imprinting is a powerful synthetic technique for generating template-defined binding sites in cross-linked polymers. One scientific challenge in molecular imprinting research is to understand the intermolecular interactions leading to molecular complexation and the process of binding site formation during polymerization. In this work, we present a novel method for studying the molecular imprinting process in precipitation polymerization systems. This method employs solution (1) H NMR and dynamic light scattering (DLS) to investigate the association of template molecules with colloidal particles and the dynamic process of particle growth. Under precipitation polymerization conditions, the colloidal particles formed did not interfere with NMR signals from the soluble components, allowing unreacted monomers and free template to be easily quantified. To examine the process of particle nucleation and growth, DLS was used to measure the hydrodynamic particle size at different reaction times. To corroborate the interpretation of the NMR and DLS results, imprinted nanoparticles were collected at different reaction times and their binding characteristics were evaluated using radioligand-binding analysis. Our experimental results provide new insights into the molecular imprinting process that will be useful in the development of new imprinted nanoparticles.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Molecular Imprinting/methods , Scattering, Radiation , Nanoparticles/chemistry
2.
J Agric Food Chem ; 56(20): 9350-4, 2008 Oct 22.
Article in English | MEDLINE | ID: mdl-18811166

ABSTRACT

Solvent extracted cashew nut shell liquid (CNSL), conventionally known as natural CNSL, is a mixture of several alkenyl phenols. One of these alkenyl phenols is anacardic acid, which is present at the highest concentration. In view of anticipated industrial applications of anacardic acid, the objective of this work was to isolate anacardic acid from natural CNSL by supercritical carbon dioxide (scCO 2). In this study, the solubility data for natural CNSL in scCO 2 under a range of operating conditions of pressure (100, 200, and 300 bar), temperature (40 and 50 degrees C), and CO 2 flow rate (5, 10, and 15 g min (-1)) were established. The best scCO 2 working conditions were found to be 50 degrees C and 300 bar at a flow rate of 5 g min (-1) CO 2. Using 3 g of sample (CNSL/solid adsorbent = 1/2) under these scCO 2 conditions, it was possible to quantitatively isolate high purity anacardic acid from crude natural CNSL (82% of total anacardic acid) within 150 min. The anacardic acid isolated by scCO 2 was analyzed by different spectroscopic techniques (UV-vis, FT-IR, and (1)H NMR) and HPLC analysis, indicating that the anacardic acid isolated by scCO 2 has better quality than that obtained through a conventional method involving several chemical conversion steps.


Subject(s)
Anacardic Acids/isolation & purification , Anacardium/chemistry , Carbon Dioxide/chemistry , Chemical Fractionation/methods , Nuts/chemistry , Anacardic Acids/chemistry , Plant Extracts/analysis , Plant Extracts/isolation & purification , Pressure , Solubility , Temperature
3.
J Agric Food Chem ; 55(22): 8870-6, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17927136

ABSTRACT

The objective of this work was to use monomers from cashew ( Anacardium occidentale L.) nut shells to develop molecularly imprinted polymers. Cashew nut shell liquid (CNSL) is a cheap and renewable agro byproduct consisting of versatile monomers. Solvent-extracted CNSL contains over 80% anacardic acid (AnAc) with more than 90% degree of unsaturation in its C 15 side chain. From AnAc monomer, anacardanyl acrylate (AnAcr) and anacardanyl methacrylate (AnMcr) monomers were synthesized and their chemical structures were characterized by Fourier transform IR and NMR. Different imprinted bulk polymers based on AnAc, AnAcr, and AnMcr functional monomers have been prepared. In the present study, each functional monomer was separately copolymerized in toluene with ethylene glycol dimethacrylate and divinylbenzene as cross-linkers, using racemic propranolol as a model template. While the AnAc based polymer revealed a meager rebinding ability, the imprinted polymers made from AnAcr and AnMcr displayed highly specific propranolol binding. At a polymer concentration of 2 mg/mL, AnAcr and AnMcr based imprinted polymers were able to bind over 50% of trace propranolol (initial concentration 1.2 nM). Under the same condition propranolol uptake by the two nonimprinted control polymers was less than 20%. Chiral recognition properties of these polymers were further confirmed using tritium-labeled (S)-propranolol as a tracer in displacement experiments, suggesting that the apparent affinity of the imprinted chiral sites for the correct enantiomer is at least 10 times that of the mismatched (R)-propranolol. Moreover, cross reactivity studies of these polymers showed that the (S)-imprinted sites have higher cross-reactivity toward (R, S)-metoprolol than (R)-propranolol and (R)-timolol.


Subject(s)
Anacardic Acids/chemistry , Anacardium/chemistry , Molecular Imprinting , Polymers/chemistry , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...