Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 7(1): e05973, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33521356

ABSTRACT

Genotype by environment interaction (GxE) complicates the process of selecting genotypes suitable for quantitative traits like seed yield in beans, hence slows down the development and release of varieties by breeding programs. GxE study on seed yield in beans enables identification of stable genotypes across sites and best site(s) for discriminating the tested genotypes in terms of seed yield. The purpose of this study was to evaluate the influence of the environment, genotype, and genotype by environment interaction on seed yield stability and adaptability of common bean landraces, lines, and improved varieties across three different agro-ecologies in Tanzania. The 99 common bean genotypes (Landraces, lines, and improved varieties) were planted following alpha lattice design in three replications each contained five blocks with 20 plots. Soil properties from the experimental sites, days to 75% flowering, Seed yield, 100 seed weight, number of seeds/pod, and number of pods/plant were recorded. Data on seed yield and its components were analyzed using Additive main effect and multiplicative interaction (AMMI), genotype main effects plus genotype × environment interaction (GGE), and yield stability index (YSI). The AMMI revealed very highly significant (P ≤ 0.001) effects of genotypes, environmental, and genotype × environment interaction on all the traits. AMMI analysis revealed that genotype main effects accounted for 39.3% of the total sum square of seed yield, whereas the environment and genotype × environmental interaction accounted for 31.4% and 26.8 % respectively. Genotype main effects largely influenced the variation in days to 75% flowering (55.5%), number of pods/plant (49.2%), number of seeds/pod (73.3%), and 100 seed weight (71.2%). Among soil properties recorded, available soil phosphorus, soil pH, soil exchangeable K, Ca, and Na had a strong positive association with common bean seed yield, while soil organic carbon and total nitrogen exhibited a strong negative association with seed yield. GGE revealed that E1 (TARI-Selian) was the most discriminative and representative site for common bean genotypes seed yield. Based on the yield stability index, the most stable and high seed yielding genotypes were ACC 714, Selian 14, Selian 9, Katuku, and Msolini. The identified high seed yielding and stable genotypes can be further tested in participatory variety selection involving farmers and later on released as varieties and can also be used for different breeding purposes in different agro-ecologies of Tanzania.

2.
Data Brief ; 31: 105664, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32529007

ABSTRACT

There are over a hundred genotypes of Phaseolus vulgaris L. grown and consumed in Tanzania. Currently, identification of bean genotypes containing high seed iron and zinc contents has been the focus globally for common bean iron and zinc biofortification. Diversity in seed iron and zinc contents were investigated in 99 bean genotypes grown in Tanzania to identify high seed iron and zinc-containing genotypes for use in iron and zinc biofortification. Flour obtained by grinding seeds of each bean genotypes was used in the determination of iron and zinc concentrations. Data were subjected to analysis of variance (ANOVA) to determine significant differences among common bean genotypes in terms of seed iron and zinc contents. Additive main effects and multiplicative interaction (AMMI) and genotype plus genotype by environment interaction (GGE) were conducted to determine stability and adaptation across sites (TARI-Selian, SUA, and TARI-Uyole) of bean genotypes in terms of seed iron and zinc contents. Data in this data article show that some landraces had high seed iron and zinc contents compared to release varieties thus can be used for iron and zinc genetic biofortification in common beans breeding programs. For more explanation of the data presented in this data article, please follow the related research article "Environmental and genotypes influence on seed iron and zinc levels of landraces and improved varieties of common bean (Phaseolus vulgaris L.) in Tanzania" [1].

SELECTION OF CITATIONS
SEARCH DETAIL
...