Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22271051

ABSTRACT

A third dose of CVnCoV, a former candidate mRNA vaccine against SARS-CoV-2, was previously shown to boost neutralizing antibody responses against SARS-CoV-2 wild-type in adults aged 18-60 and >60 years in a phase 2a clinical study. Here we report neutralizing antibody responses to wild-type and a variant of concern, Delta, after a third dose on day (D) 57 and D180. Neutralization activity was assessed using a microneutralization assay. Comparable levels of neutralizing antibodies against wild-type and Delta were induced. These were higher than those observed after the first two doses, irrespective of age or pre-SARS-CoV-2-exposure status, indicating that the first two doses induced immune memory. Four weeks after the third dose on D180, neutralizing titers for wild-type and Delta were two-fold higher in younger participants than in older participants; seroconversion rates were 100% for wild-type and Delta in the younger group and for Delta in the older group. A third CVnCoV dose induced similar levels of neutralizing responses against wild-type virus and the Delta variant in both naive and pre-exposed participants, aligning with current knowledge from licensed COVID-19 vaccines that a third dose is beneficial against SARS-CoV-2 variants.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20228551

ABSTRACT

There is an urgent need for vaccines to counter the COVID-19 pandemic due to infections with severe acute respiratory syndrome coronavirus (SARS-CoV-2). Evidence from convalescent sera and preclinical studies has identified the viral Spike (S) protein as a key antigenic target for protective immune responses. We have applied an mRNA-based technology platform, RNActive(R), to develop CVnCoV which contains sequence optimized mRNA coding for a stabilized form of S protein encapsulated in lipid nanoparticles (LNP). Following demonstration of protective immune responses against SARS-CoV-2 in animal models we performed a dose-escalation phase 1 study in healthy 18-60 year-old volunteers. This interim analysis shows that two doses of CVnCoV ranging from 2 g to 12 g per dose, administered 28 days apart were safe. No vaccine-related serious adverse events were reported. There were dose-dependent increases in frequency and severity of solicited systemic adverse events, and to a lesser extent of local reactions, but the majority were mild or moderate and transient in duration. Immune responses when measured as IgG antibodies against S protein or its receptor-binding domain (RBD) by ELISA, and SARS-CoV-2-virus neutralizing antibodies measured by micro-neutralization, displayed dose-dependent increases. Median titers measured in these assays two weeks after the second 12 g dose were comparable to the median titers observed in convalescent sera from COVID-19 patients. Seroconversion (defined as a 4-fold increase over baseline titer) of virus neutralizing antibodies two weeks after the second vaccination occurred in all participants who received 12 g doses. Preliminary results in the subset of subjects who were enrolled with known SARS-CoV-2 seropositivity at baseline show that CVnCoV is also safe and well tolerated in this population, and is able to boost the pre-existing immune response even at low dose levels. Based on these results, the 12 g dose is selected for further clinical investigation, including a phase 2b/3 study that will investigate the efficacy, safety, and immunogenicity of the candidate vaccine CVnCoV.

SELECTION OF CITATIONS
SEARCH DETAIL
...