Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21260563

ABSTRACT

IntroductionProphylactic vaccination against SARS-CoV-2 is one of the most important measures to contain the COVID-19 pandemic. Recently, break-through infections following vaccination against this virus have been reported. Here, we describe the humoral immune response of break-through infections in fully vaccinated individuals of old age from an outbreak in a nursery home. MethodsIn cooperation with the local health authority, blood samples from fully vaccinated and infected as well as fully vaccinated and uninfected residents of the nursery home were collected four weeks after the onset of the outbreak. The humoral immune response was determined in a neutralisation assay with replication-competent virus isolates and by a quantitative ELISA. ResultsIn this outbreak a total of 23 residents and four health care workers were tested positive for SARS-CoV-2. Four residents were unvaccinated, including one with a severe course of disease who later deceased. Despite their old age, all vaccinated residents showed no or only mild disease. Comparison of the humoral immune response revealed significantly higher antibody levels in fully vaccinated infected individuals compared to fully vaccinated uninfected individuals (p<0.001). Notably, although only a minority of the vaccinated uninfected group showed neutralisation capacity against SARS-CoV-2, all vaccinated and infected individuals showed high-titer neutralisation of SARS-CoV-2 including the alpha and beta variant. DiscussionLarge SARS-CoV-2 outbreaks can occur in fully vaccinated populations, but seem to associate with mild disease. SARS-CoV-2 infection in fully vaccinated individuals is a strong booster of the humoral immune response providing enhanced neutralisation capacity against immune evasion variants.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21251066

ABSTRACT

BackgroundThe SARS-CoV-2 pandemic has led to the development of various vaccines. Real-life data on immune responses elicited in the most vulnerable group of vaccinees over 80 years old is still underrepresented despite the prioritization of the elderly in vaccination campaigns. MethodsWe conducted a cohort study with two age groups, young vaccinees below the age of 60 and elderly vaccinees over the age of 80, to compare their antibody responses to the first and second dose of the BNT162b2 COVID-19 vaccination. ResultsWhile the majority of participants in both groups produced specific IgG antibody titers against SARS-CoV-2 spike protein, titers were significantly lower in elderly participants. Although the increment of antibody levels after the second immunization was higher in elderly participants, the absolute mean titer of this group remained lower than the <60 group. After the second vaccination, 31.3 % of the elderly had no detectable neutralizing antibodies in contrast to the younger group, in which only 2.2% had no detectable neutralizing antibodies. ConclusionOur data suggests that lower frequencies of neutralizing antibodies after BNT162b2 vaccination in the elderly population may require earlier revaccination to ensure strong immunity and protection against infection.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-426875

ABSTRACT

We present a small molecule chemotype, identified by an orthogonal drug screen, exhibiting nanomolar activity against members of all the six viral families causing most human respiratory viral disease, with a demonstrated barrier to resistance development. Antiviral activity is shown in mammalian cells, including human primary bronchial epithelial cells cultured to an air-liquid interface and infected with SARS-CoV-2. In animals, efficacy of early compounds in the lead series is shown by survival (for a coronavirus) and viral load (for a paramyxovirus). The drug target is shown to include a subset of the protein 14-3-3 within a transient host multi-protein complex containing components implicated in viral lifecycles and in innate immunity. This multi-protein complex is modified upon viral infection and largely restored by drug treatment. Our findings suggest a new clinical therapeutic strategy for early treatment upon upper respiratory viral infection to prevent progression to lower respiratory tract or systemic disease. One Sentence SummaryA host-targeted drug to treat all respiratory viruses without viral resistance development.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20128686

ABSTRACT

We analysed SARS-CoV-2 specific antibody responses in 42 social and working contacts of a super-spreader from the Heinsberg area in Germany. Consistent with a high-prevalence setting 26 individuals had SARS-CoV-2 antibodies determined by in-house neutralisation testing. These results were compared with four commercial assays, suggesting limited sensitivity of the assays in such a high-prevalence setting. Although SARS-CoV-2 nucleocapsid-restricted tests showed a better sensitivity, spike-based assays had a stronger correlation with neutralisation capacity.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-106575

ABSTRACT

COVID-19 pandemic caused by SARS-CoV-2 infection is a public health emergency. COVID-19 typically exhibits respiratory illness. Unexpectedly, emerging clinical reports indicate that neurological symptoms continue to rise, suggesting detrimental effects of SARS-CoV-2 on the central nervous system (CNS). Here, we show that a Dusseldorf isolate of SARS-CoV-2 enters 3D human brain organoids within two days of exposure. Using COVID-19 convalescent serum, we identified that SARS-CoV-2 preferably targets soma of cortical neurons but not neural stem cells, the target cell type of ZIKA virus. Imaging cortical neurons of organoids reveal that SARS-CoV-2 exposure is associated with missorted Tau from axons to soma, hyperphosphorylation, and apparent neuronal death. Surprisingly, SARS-CoV-2 co-localizes specifically with Tau phosphorylated at Threonine-231 in the soma, indicative of early neurodegeneration-like effects. Our studies, therefore, provide initial insights into the impact of SARS-CoV-2 as a neurotropic virus and emphasize that brain organoids could model CNS pathologies of COVID-19. One sentence summaryCOVID-19 modeling in human brain organoids

SELECTION OF CITATIONS
SEARCH DETAIL
...