Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ecotoxicol Environ Saf ; 272: 116031, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38309236

ABSTRACT

Nanosized titanium dioxide (nTiO2) is widely used in products, warranting its discharge from various sources into surface water bodies. However, nTiO2 co-occurs in surface waters with other contaminants, such as metals. Studies with nTiO2 and metals have indicated that the presence of natural organic matter (NOM) can mitigate their toxicity to aquatic organisms. In addition, "aging" of nTiO2 can affect toxicity. However, it is a research challenge, particularly when addressing sublethal responses from dietary exposure over multiple generations. We, therefore exposed the alga Desmodesmus subspicatus to nTiO2 (at concentrations of 0.0, 0.6 and 3.0 mg nTiO2/L) in nutrient medium aged for 0 or 3 days with copper (Cu) at concentrations of 0 and 116 µg Cu/L and with NOM at concentrations equivalent to 0 and 8 mg total organic carbon (TOC) per litre. Subsequently, the exposed alga was fed to Daphnia magna for 23 days over two generations and survival, reproduction and body length were assessed as endpoints of toxicity. In parallel, Cu accumulation and depuration from D. magna were measured. The results indicate that the reproduction of D. magna was the most sensitive parameter in this study, being reduced by 30% (at both parental (F0) and filial (F1) generations) and 50% (at F0 but not F1) due to the dietary Cu exposure in combination with nTiO2 for 0 and 3 days aging, respectively. There was no relationship between the effects observed on reproduction and Cu body burden in D. magna. Moreover, D. magna from the F1 generation showed an adaptive response to Cu in the treatment with 3.0 mg nTiO2/L aged for 3 days, potentially due to epigenetic inheritance. Unexpectedly, the presence of NOM hardly changed the observed effects, pointing towards the function of algal exopolymeric substances or intracellular organic matter, rendering the NOM irrelevant. Ultimately, the results indicate that the transferability of the impacts observed during the F0 to the responses in the F1 generation is challenging due to opposite effect directions. Additional mechanistic studies are needed to unravel this inconsistency in the responses between generations and to support the development of reliable effect models.


Subject(s)
Nanoparticles , Titanium , Water Pollutants, Chemical , Animals , Copper , Daphnia , Daphnia magna , Dietary Exposure , Nanoparticles/toxicity , Reproduction , Water Pollutants, Chemical/toxicity
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123135, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37454436

ABSTRACT

Aqueous solutions of acetic acid (AA) have been intensively explored for decades with a particular attention addressed to the hydrogen bond network generated by COOH group at different concentrations. In majority of studies conducted so far the envelope originated from νCO is decomposed into two bands assigned to differently hydrated monomers: the one presumably to AA···H2O, and another one to AA···(H2O)2. In order to examine if species other than the mentioned monomers produce this spectral signature, we performed computational and FTIR spectroscopic study of AA in aqueous solutions. Dilute solutions of deuterated acetic acid (CD3COOD) in D2O and in C2Cl4 as a reference were prepared (c0 = 0.001, 0.01 and 0.1 mol dm-3) as well as of deuterated sodium acetate (CD3COONa) in D2O. CD3COOD in 0.1 mol dm-3 solution in D2O displays a feature that separated in two signals with maxima at 1706 cm-1 and 1687 cm-1. A combined DFT and molecular dynamics study performed in this work showed the assignation of those spectral bands to be a more complex problem than previously thought, with syn-anti isomerism and hydration contributing to the experimentally observed broad νCO envelope.

3.
Environ Sci Pollut Res Int ; 28(38): 53181-53192, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34021457

ABSTRACT

Phosphate fertilization contributes to an input of uranium (U) in agricultural soils. Although its accumulation and fate in agricultural soils have been previously studied, its colloidal transport and accumulation along slopes through erosion have been studied to a lesser extent in viticulture soils. To bridge this gap, the contents and potential mobility of U were investigated in vineyard model soils in the Rhineland-Palatinate region, Germany. In addition to elevated U contents, U was expected to associate with colloids and subject to erosion, thus accumulating on slope foots and in soils with fine structure, and reflecting a greater variability. Moreover, another expectation was the favorable erosion/mobility of U in areas with greater carbonate content. This was tested in three regional locations, at different slope positions and through soil horizon depths, with a total of 57 soil samples. The results show that U concentrations (0.48-1.26 ppm) were slightly higher than proximal non-agricultural soils (0.50 ppm), quite homogenous along slope positions, and slightly higher in topsoils. Assuming a homogeneous fertilization, the vertical translocation of U in soil was most probably higher than along the slope by erosion. In addition, carbonate content and soil texture correlated with U concentrations, whereas other parameters such as organic carbon and iron contents did not. The central role of carbonate and soil texture for the prediction of U content was confirmed using decision trees and elastic net, although their limited prediction power suggests that a larger sample size with a larger range of U content is required to improve the accuracy. Overall, we did not observe neither U nor colloids accumulating on slope foots, thus suggesting that soils are aggregate-stable. Lastly, we suggested considering further soil parameters (e.g., Ca2+, phosphorus, alkali metals) in future works to improve our modelling approach. Overall, our results suggest U is fortunately immobile in the studied locations.


Subject(s)
Soil Pollutants , Uranium , Agriculture , Farms , Phosphorus , Soil , Soil Pollutants/analysis , Uranium/analysis
4.
Environ Pollut ; 270: 116084, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33246757

ABSTRACT

Copper oxide nanoparticles (CuO-NP) are used as an efficient alternative to conventional Cu in agriculture and might end up in soils. They show a high toxicity towards cells and microorganisms, but only low toxicity towards soil invertebrates. However, most existing soil ecotoxicological studies were conducted in a sandy reference soil and at test concentrations ≥100 mg Cu/kg soil. Therefore, there is a knowledge gap concerning the effect of soil texture on the toxicity of CuO-NP at lower, more realistic test concentrations. In our study, a sandy reference soil and three loamy soils were spiked with CuO-NP at up to four concentrations, ranging from 5 to 158 mg Cu/kg. We investigated 28-day reproduction as well as weight and Cu content after 14-day bioaccumulation and subsequent 14-day elimination for the springtail Folsomia candida. For the first time we analysed the size distribution of CuO-NP in aqueous test soil extracts by single particle-ICP-MS which revealed that the diameter of CuO-NP significantly increased with increasing concentration, but did not vary between test soils. Negative effects on reproduction were only observed in loamy soils, most pronounced in a loamy-acidic soil (-61%), and they were always strongest at the lowest test concentration. The observed effects were much stronger than reported by other studies performed with sandy soils and higher CuO-NP concentrations. In the same soil and concentration, a moderate impact on growth (-28%) was observed, while Cu elimination from springtails was inhibited. Rather than Cu body concentration, the diameter of the CuO-NP taken up, as well as NP-clay interactions might play a crucial role regarding their toxicity. Our study reports for the first time toxic effects of CuO-NP towards a soil invertebrate at a low, realistic concentration range. The results strongly suggest including lower test concentrations and a range of soil types in nanotoxicity testing.


Subject(s)
Arthropods , Metal Nanoparticles , Nanoparticles , Soil Pollutants , Animals , Copper/analysis , Copper/toxicity , Metal Nanoparticles/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
5.
Crit Rev Anal Chem ; : 1-21, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33054361

ABSTRACT

The monitoring of anthropogenic TiO2-nanoparticles in soils is challenged by the knowledge gap on their characteristics of the large natural TiO2-nanoparticle pool. Currently, no efficient method is available for characterizing natural TiO2-nanoparticles in soils without an extraction procedure. Considering the reported diversity of extraction methods, the following article reviews and discusses their potential for TiO2 from soils, focusing on the selectivity and the applicability to complex samples. It is imperative to develop a preparative step reducing analytical interferences and producing a stable colloidal dispersion. It is suggested that an oxidative treatment, followed by alkaline conditioning and the application of dispersive agents, achieve such task. This enables the further separation and characterization through size or surface-based separation (i.e., hydrodynamic fractionation methods, filtration or sequential centrifugation). Meanwhile, cloud point extraction, gel electrophoresis, and electrophoretic deposition have been studied on various nanoparticles but not on TiO2-nanoparticles. Furthermore, industrially applied methods in, for example, kaolin processing (flotation and flocculation) are interesting but require further improvements on terms of selectivity and applicability to soil samples. Overall, none of the current extraction methods is sufficient toward TiO2; however, further optimization or combination of orthogonal techniques could help reaching a fair selectivity toward TiO2.

6.
Sci Total Environ ; 699: 134387, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31670213

ABSTRACT

Riverbank filtration is a natural process that may ensure the cleaning of surface water for producing drinking water. For silver nanoparticles (AgNP), physico-chemical interaction with sediment surfaces is one major retention mechanism. However, the effect of flow velocity and the importance of biological retention, such as AgNP attachment to biomass, are not well understood, yet. We investigated AgNP (c = 0.6 mg L-1) transport at different spatial and temporal scales in pristine and previously pond water-aged sediment columns. Transport of AgNP under near-natural conditions was studied in a long-term riverbank filtration experiment over the course of one month with changing flow scenarios (i.e. transport at 0.7 m d-1, stagnation, and remobilization at 1.7 m d-1). To elucidate retention processes, we conducted small-scale lab column experiments at low (0.2 m d-1) and high (0.7 m d-1) flow rate using pristine and aged sediments. Overall, AgNP accumulated in the upper centimeters of the sediment both in lab and outdoor experiments. In the lab study, retention of AgNP by attachment to biological components was very effective under high and low flow rate with nearly complete NP accumulation in the upper 2 mm. When organic material was absent, abiotic filtration mechanisms led to NP retention in the upper 5 to 7 cm of the column. In the long-term study, AgNP were transported up to a depth of 25 cm. For the pristine sediment in the lab study and the outdoor experiments only erratic particle breakthrough was detected in a depth of 15 cm. We conclude that physico-chemical interactions of AgNP with sediment surfaces are efficient in retaining AgNP. The presence of organic material provides additional retention sites which increase the filtration capacity of the system. Nevertheless, erratic breakthrough events might transport NP into deeper sediment layers.


Subject(s)
Metal Nanoparticles/analysis , Silver/analysis , Water Pollutants, Chemical/analysis , Filtration , Rivers , Water Movements
7.
Sci Total Environ ; 645: 192-204, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30021176

ABSTRACT

Riverbank filtration systems are important structures that ensure the cleaning of infiltrating surface water for drinking water production. In our study, we investigated the potential risk for a breakthrough of environmentally aged silver nanoparticles (Ag NP) through these systems. Additionally, we identified factors leading to the remobilization of Ag NP accumulated in surficial sediment layers in order to gain insights into remobilization mechanisms. We conducted column experiments with Ag NP in an outdoor pilot plant consisting of water-saturated sediment columns mimicking a riverbank filtration system. The NP had previously been aged in river water, soil extract, and ultrapure water, respectively. We investigated the depth-dependent breakthrough and retention of NP. In subsequent batch experiments, we studied the processes responsible for a remobilization of Ag NP retained in the upper 10 cm of the sediments, induced by ionic strength reduction, natural organic matter (NOM), and mechanical forces. We determined the amount of remobilized Ag by ICP-MS and differentiated between particulate and ionic Ag after remobilization using GFAAS. The presence of Ag-containing heteroaggregates was investigated by combining filtration with single-particle ICP-MS. Single and erratic Ag breakthrough events were mainly found in 30 cm depth and Ag NP were accumulated in the upper 20 cm of the columns. Soil-aged Ag NP showed the lowest retention of only 54%. Remobilization was induced by the reduction of ionic strength and the presence of NOM in combination with mechanical forces. The presence of calcium in the aging- as well as the remobilizing media reduced the remobilization potential. Silver NP were mainly remobilized as heteroaggregates with natural colloids, while dissolution played a minor role. Our study indicates that the breakthrough potential of Ag NP in riverbank filtration systems is generally low, but the aging in soil increases their mobility. Remobilization processes are associated to co-mobilization with natural colloids.

8.
Anal Bioanal Chem ; 408(27): 7551-7557, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27558100

ABSTRACT

Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is characterized by a phase separation of non-ionic surfactants dispersed in an aqueous solution when the respective cloud point temperature is exceeded. In this context, the feature article raises the following question: May CPE in future studies serve as a key tool (i) to enrich and extract nanoparticles (NPs) from complex environmental matrices prior to analyses and (ii) to preserve the colloidal status of unstable environmental samples? With respect to engineered NPs, a significant gap between environmental concentrations and size- and element-specific analytical capabilities is still visible. CPE may support efforts to overcome this "concentration gap" via the analyte enrichment. In addition, most environmental colloidal systems are known to be unstable, dynamic, and sensitive to changes of the environmental conditions during sampling and sample preparation. This delivers a so far unsolved "sample preparation dilemma" in the analytical process. The authors are of the opinion that CPE-based methods have the potential to preserve the colloidal status of these instable samples. Focusing on NPs, this feature article aims to support the discussion on the creation of a convention called the "CPE extractable fraction" by connecting current knowledge on CPE mechanisms and on available applications, via the uncertainties visible and modeling approaches available, with potential future benefits from CPE protocols.

9.
Sci Total Environ ; 535: 3-19, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25455109

ABSTRACT

Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO2 NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag2S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO2 NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO2 NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).


Subject(s)
Environmental Pollutants , Nanoparticles , Silver Compounds , Thermodynamics , Titanium
10.
Sci Total Environ ; 535: 35-44, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25433382

ABSTRACT

Silver nanoparticles (Ag NPs) could be found in aquatic systems in the near future. Although the interplay between aggregate formation and disaggregation is an important factor for mobility, bioavailability and toxicity of Ag NPs in surface waters, the factors controlling disaggregation of Ag NP homoaggregates are still unknown. In this study, we investigated the reversibility of homoaggregation of citrate coated Ag NPs in a Rhine River water matrix. We characterized the disaggregation of Ag NP homoaggregates by ionic strength reduction and addition of Suwannee River humic acid (SRHA) in the presence of strong and weak shear forces. In order to understand the disaggregation processes, we also studied the nature of homoaggregates and their formation dynamics under the influence of SRHA, Ca(2+) concentration and nanoparticle concentration. Even in the presence of SRHA and at low particle concentrations (10 µg L(-1)), aggregates formed rapidly in filtered Rhine water. The critical coagulation concentration (CCC) of Ca(2+) in reconstituted Rhine water was 1.5 mmol L(-1) and was shifted towards higher values in the presence of SRHA. Analysis of the attachment efficiency as a function of Ca(2+) concentration showed that SRHA induces electrosteric stabilization at low Ca(2+) concentrations and cation-bridging flocculation at high Ca(2+) concentrations. Shear forces in the form of mechanical shaking or ultrasound were necessary for breaking the aggregates. Without ultrasound, SRHA also induced disaggregation, but it required several days to reach a stable size of dense aggregates still larger than the primary particles. Citrate stabilized Ag NPs may be in the form of reaction limited aggregates in aquatic systems similar to the Rhine River. The size and the structure of these aggregates will be dynamic and be determined by the solution conditions. Seasonal variations in the chemical composition of natural waters can result in a sedimentation-release cycle of engineered nanoparticles.


Subject(s)
Metal Nanoparticles/chemistry , Models, Chemical , Rivers/chemistry , Silver/chemistry , Adsorption , Hydrogen-Ion Concentration , Particle Size
11.
Environ Sci Technol ; 48(16): 8946-62, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25082801

ABSTRACT

This contribution critically reviews the state of knowledge on interactions of natural colloids and engineered nanoparticles with natural dissolved organic materials (DOM). These interactions determine the behavior and impact of colloids in natural system. Humic substances, polysaccharides, and proteins present in natural waters adsorb onto the surface of most colloids. We outline major adsorption mechanisms and structures of adsorption layers reported in the literature and discuss their generality on the basis of particle type, DOM type, and media composition. Advanced characterization methods of both DOM and colloids are needed to address insufficiently understood aspects as DOM fractionation upon adsorption, adsorption reversibility, and effect of capping agent. Precise knowledge on adsorption layer helps in predicting the colloidal stability of the sorbent. While humic substances tend to decrease aggregation and deposition through electrostatic and steric effects, bridging-flocculation can occur in the presence of multivalent cations. In the presence of DOM, aggregation may become reversible and aggregate structure dynamic. Nonetheless, the role of shear forces is still poorly understood. If traditional approaches based on the DLVO-theory can be useful in specific cases, quantitative aggregation models taking into account DOM dynamics, bridging, and disaggregation are needed for a comprehensive modeling of colloids stability in natural media.


Subject(s)
Colloids/chemistry , Humic Substances , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Flocculation , Humic Substances/analysis , Models, Theoretical , Solubility , Static Electricity
12.
PLoS One ; 9(2): e90559, 2014.
Article in English | MEDLINE | ID: mdl-24587393

ABSTRACT

In this study, we evaluated hydrodynamic chromatography (HDC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) for the analysis of nanoparticles in environmental samples. Using two commercially available columns (Polymer Labs-PDSA type 1 and 2), a set of well characterised calibrants and a new external time marking method, we showed that flow rate and eluent composition have few influence on the size resolution and, therefore, can be adapted to the sample particularity. Monitoring the agglomeration of polystyrene nanoparticles over time succeeded without observable disagglomeration suggesting that even weak agglomerates can be measured using HDC. Simultaneous determination of gold colloid concentration and size using ICP-MS detection was validated for elemental concentrations in the ppb range. HDC-ICP-MS was successfully applied to samples containing a high organic and ionic background. Indeed, online combination of UV-visible, fluorescence and ICP-MS detectors allowed distinguishing between organic molecules and inorganic colloids during the analysis of Ag nanoparticles in synthetic surface waters and TiO2 and ZnO nanoparticles in commercial sunscreens. Taken together, our results demonstrate that HDC-ICP-MS is a flexible, sensitive and reliable method to measure the size and the concentration of inorganic colloids in complex media and suggest that there may be a promising future for the application of HDC in environmental science. Nonetheless the rigorous measurements of agglomerates and of matrices containing natural colloids still need to be studied in detail.


Subject(s)
Chromatography, High Pressure Liquid/methods , Colloids/analysis , Environmental Pollutants/analysis , Mass Spectrometry/methods , Spectrophotometry/methods , Calibration , Chromatography, High Pressure Liquid/instrumentation , Colloids/chemistry , Environmental Monitoring/methods , Environmental Pollutants/chemistry , Hydrodynamics , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Particle Size , Reproducibility of Results , Silver/chemistry , Sunscreening Agents/chemistry , Titanium/analysis , Water Pollutants, Chemical/analysis , Zinc Oxide/analysis
13.
Anal Chem ; 85(22): 10643-7, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24156639

ABSTRACT

Studying the environmental fate of engineered or natural colloids requires efficient methods for measuring their size and quantifying them in the environment. For example, an ideal method should maintain its correctness, accuracy, reproducibility, and robustness when applied to samples contained in complex matrixes and distinguish the target particles from the natural colloidal background signals. Since it is expected that a large portion of nanoparticles will form homo- or heteroagglomerates when released into environmental media, it is necessary to differentiate agglomerates from primary particles. At present, most sizing techniques do not fulfill these requirements. In this study, we used online coupling of two promising complementary sizing techniques: hydrodynamic chromatography (HDC) and single-particle ICPMS analysis to analyze gold nanoparticles agglomerated under controlled conditions. We used the single-particle mode of the ICPMS detector to detect single particles eluted from an HDC-column and determine a mass and an effective diameter for each particle using a double calibration approach. The average agglomerate relative density and fractal dimension were calculated using these data and used to follow the morphological evolution of agglomerates over time during the agglomeration process. The results demonstrate the ability of HDC coupled to single-particle analysis to identify and characterize nanoparticle homoagglomerates and is a very promising technique for the analysis of colloids in complex media.

SELECTION OF CITATIONS
SEARCH DETAIL
...