Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 59(2): 273-88, 2008.
Article in English | MEDLINE | ID: mdl-18267945

ABSTRACT

It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes. At mature green stage, pectin content in methyl ester groups was slightly higher in AS-DR12 fruit than in wild type, but this ratio was reversed at the red-ripe stage. The amount of water- and oxalate-soluble pectins increased at the red-ripe stage in the wild type, but decreased in AS-DR12. The distribution of methyl ester groups on the homogalaturonan backbone differed between the two genotypes. There was no evidence of more calcium cross-linked homogalacturan involved in cell-to-cell adhesion in AS-DR12 compared with wild-type fruit. Furthermore, the outer pericarp contains higher proportion of small cells in AS-DR12 fruit than in wild type and higher occurrence of (1-->5) alpha-L-arabinan epitope at the RR stage. It is concluded that the increased firmness of transgenic fruit does not result from a major impairment of ripening-related pectin metabolism, but rather involves differences in pectin fine structure associated with changes in tissue architecture.


Subject(s)
Cell Wall/metabolism , Fruit/metabolism , Pectins/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/metabolism , Carbohydrates/isolation & purification , Cell Wall/ultrastructure , Down-Regulation , Fruit/ultrastructure , Immunochemistry , Solanum lycopersicum/genetics , Solanum lycopersicum/ultrastructure , Oxalic Acid/chemistry , Pectins/chemistry , Pectins/ultrastructure , Plant Extracts/chemistry , Plant Proteins/genetics
2.
Planta ; 225(5): 1287-99, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17086400

ABSTRACT

A polyclonal antibody has been raised against ferulic acid ester linked to arabinoxylans (AX). 5-O-feruloyl-alpha-L-arabinofuranosyl(1-->4)-beta-D-xylopyranosyl was obtained by chemical synthesis, and was coupled to bovine serum albumin for the immunization of rabbit. The polyclonal antibody designated 5-O-Fer-Ara was highly specific for 5-O-(trans-feruloyl)-L-arabinose (5-O-Fer-Ara) structure that is a structural feature of cell wall AX of plants belonging to the family of Gramineae. The antibody has been used to study the location and deposition of feruloylated AX in walls of aleurone and starchy endosperm of wheat grain. 5-O-Fer-Ara began to accumulate early in aleurone cell wall development (beginning of grain filling, 13 days after anthesis, DAA) and continued to accumulate until the aleurone cells were firmly fixed between the starchy endosperm and the nucelus epidermis (19 DAA). From 26 DAA to maturity, the aleurone cell walls changed little in appearance. The concentration of 5-O-Fer-Ara is high in both peri- and anticlinal aleurone cell walls with the highest accumulation of 5-O-Fer-Ara at the cell junctions at the seed coat interface. The situation is quite different in the starchy endosperm: whatever the stage of development, a low amount of 5-O-Fer-Ara epitope was detected. Contrary to what was observed for aleurone cell walls, no peak of accumulation of feruloylated AX was noticed between 13 and 19 DAA. Visualization of labelled Golgi vesicles suggested that the feruloylation of AX is intracellular. The distribution of (5-O-Fer-Ara) epitope is further discussed in relation to the role of ferulic acid and its dehydrodimers in cell wall structure and tissue organization of wheat grain.


Subject(s)
Cell Wall/metabolism , Coumaric Acids/metabolism , Triticum/metabolism , Carbohydrate Conformation , Carbohydrate Sequence , Molecular Sequence Data , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Seasons , Seeds/growth & development , Seeds/metabolism , Triticum/growth & development
3.
J Agric Food Chem ; 54(14): 5113-9, 2006 Jul 12.
Article in English | MEDLINE | ID: mdl-16819924

ABSTRACT

The time course and pattern of arabinoxylan deposition in the wheat (Triticum aestivum) endosperm during grain development were studied using Raman spectroscopy. The presence of arabinoxylans (AX) is detected at the beginning of grain filling. At this stage, AX appear more substituted than at the later stages. Feruloylation of AX increases during the grain-filling stage, especially in the case of the aleurone layer. Whatever the stage of grain development, four populations of cells could be defined according to Raman arabinoxylan signatures. In the walls of the aleurone cells, AX appeared to be little substituted and highly esterified with phenolic acids. In the walls of prismatic cells, AX were found to be highly substituted and poorly esterified. Apart from aleurone and prismatic cells, the substitution degree of AX in endosperm was in the same range. Cells in the crease region were distinguished from cells in the starchy endosperm by their lower amount of esterified phenolic compounds.


Subject(s)
Cell Wall/chemistry , Seeds/growth & development , Seeds/ultrastructure , Spectrum Analysis, Raman , Triticum/ultrastructure , Xylans/analysis , Time Factors
4.
J Agric Food Chem ; 54(6): 2303-8, 2006 Mar 22.
Article in English | MEDLINE | ID: mdl-16536611

ABSTRACT

The time course and pattern deposition of the cell wall polysaccharides in the starchy endosperm of wheat (Triticum aestivum cv. Recital) during grain development was studied using Fourier transform infrared microspectroscopy (micro-FTIR). Three stages of grain development identified as key stages for cell wall construction were retained as follows: the end cellularization, the beginning of cell differentiation, and the beginning of maturation. Micro-FTIR revealed that beta-(1-->3),(1-->4) glucans and arabinoglactan proteins are the main cell wall components of endosperm at the end of the cellularization stage, whereas arabinoxylans (AX) appeared only at the cell differentiation stage. Past the differentiation stage, FTIR spectra were dominated by AX features. Cell walls at the beginning of cell differentiation and at endosperm maturation could be distinguished by spectral features that were ascribed to AX substitution. AX appeared more substituted at the beginning of cell differentiation. Moreover, a difference in the degree of AX substitution was found between peripheral and central parts of the grain at the cell differentiation stage; AX in central cells was less substituted. Thus, dramatic changes in endosperm cell wall composition were detected during wheat grain development with respect to both the relative occurrence of individual constituents and the fine structure of the AX.


Subject(s)
Cell Wall/chemistry , Polysaccharides/analysis , Seeds/chemistry , Seeds/growth & development , Spectroscopy, Fourier Transform Infrared , Triticum/chemistry , Xylans/analysis
5.
Planta ; 224(2): 449-61, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16404577

ABSTRACT

Arabinoxylans (AX) and (1-->3),(1-->4)-beta-glucans are major components of wheat endosperm cell walls. Their chemical heterogeneity has been described but little is known about the sequence of their deposition in cell walls during endosperm development. The time course and pattern of deposition of the (1-->3) and (1-->3),(1-->4)-beta-glucans and AX in the endosperm cell walls of wheat (Triticum aestivum L. cv. Recital) during grain development was studied using specific antibodies. At approximately 45 degrees D (degree-days) after anthesis the developing walls contained (1-->3)-beta-glucans but not (1-->3),(1-->4)-beta-glucans. In contrast, (1-->3),(1-->4)-beta-glucans occurred widely in the walls of maternal tissues. At the end of the cellularization stage (72 degrees D), (1-->3)-beta-glucan epitopes disappeared and (1-->3),(1-->4)-beta-glucans were found equally distributed in all thin walls of wheat endosperm. The AX were detected at the beginning of differentiation (245 degrees D) in wheat endosperm, but were missing in previous stages. However, epitopes related to AX were present in nucellar epidermis and cross cells surrounding endosperm at all stages but not detected in the maternal outer tissues. As soon as the differentiation was apparent, the cell walls exhibited a strong heterogeneity in the distribution of polysaccharides within the endosperm.


Subject(s)
Cell Wall/metabolism , Triticum/embryology , Xylans/metabolism , beta-Glucans/metabolism , Cell Wall/ultrastructure , Cytoplasm/ultrastructure , Golgi Apparatus/ultrastructure , Time Factors , Triticum/cytology , Triticum/growth & development , Triticum/ultrastructure , Xylans/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...