Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 17(4): 931-943, 2017 04.
Article in English | MEDLINE | ID: mdl-28027623

ABSTRACT

Regulatory T cell (Treg) therapy using recipient-derived Tregs expanded ex vivo is currently being investigated clinically by us and others as a means of reducing allograft rejection following organ transplantation. Data from animal models has demonstrated that adoptive transfer of allospecific Tregs offers greater protection from graft rejection compared to polyclonal Tregs. Chimeric antigen receptors (CAR) are clinically translatable synthetic fusion proteins that can redirect the specificity of T cells toward designated antigens. We used CAR technology to redirect human polyclonal Tregs toward donor-MHC class I molecules, which are ubiquitously expressed in allografts. Two novel HLA-A2-specific CARs were engineered: one comprising a CD28-CD3ζ signaling domain (CAR) and one lacking an intracellular signaling domain (ΔCAR). CAR Tregs were specifically activated and significantly more suppressive than polyclonal or ΔCAR Tregs in the presence of HLA-A2, without eliciting cytotoxic activity. Furthermore, CAR and ΔCAR Tregs preferentially transmigrated across HLA-A2-expressing endothelial cell monolayers. In a human skin xenograft transplant model, adoptive transfer of CAR Tregs alleviated the alloimmune-mediated skin injury caused by transferring allogeneic peripheral blood mononuclear cells more effectively than polyclonal Tregs. Our results demonstrated that the use of CAR technology is a clinically applicable refinement of Treg therapy for organ transplantation.


Subject(s)
Graft Rejection/prevention & control , HLA-A2 Antigen/immunology , Receptors, Antigen/immunology , Skin Transplantation/adverse effects , T-Lymphocytes, Regulatory/immunology , Allografts , Animals , Graft Rejection/etiology , Graft Survival/immunology , Heterografts , Humans , Leukocytes, Mononuclear , Mice , Mice, Inbred BALB C , Transplantation Tolerance/immunology
2.
J Biomol NMR ; 44(3): 127-37, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19513588

ABSTRACT

(1)H NMR spectroscopy of sera from HIV-1 infected and uninfected individuals was performed on 300 and 600 MHz instruments. The resultant spectra were automatically data reduced to 90 and 180 integral segments of equal length. Analysis of variance identified significant differences between the sample groups, especially for the samples analyzed on 600 MHz and reduced to fewer segments. Linear discriminant analysis correctly classified 100% of the samples analyzed on the 300 MHz NMR (reduced to 180 segments); an increase in instrument sensitivity resulted in lower percentages of correctly classified samples. Multinomial logistic regression (MLR) resulted in 100% correct classification of all samples from both instruments. Thus (1)H-NMR metabonomics on either instrument distinguishes HIV-positive individuals using or not using anti retroviral therapy, but the sensitivity of the instrument impacts on data reduction. Furthermore, MLR is a novel multivariate statistical technique for improved classification of biological data analyzed in NMR.


Subject(s)
HIV Infections/blood , HIV-1/physiology , Magnetic Resonance Spectroscopy/methods , Anti-Retroviral Agents/therapeutic use , HIV Infections/drug therapy , Humans , Logistic Models
SELECTION OF CITATIONS
SEARCH DETAIL
...