Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Molecules ; 28(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298860

ABSTRACT

Extra virgin olive oil (EVOO) should be naturally free of polycyclic aromatic hydrocarbon (PAH) contamination. PAHs are carcinogenic and toxic, and may cause human health and safety problems. This work aims to detect benzo[a]pyrene residues in EVOO using an easily adaptive optical methodology. This approach, which is based on fluorescence spectroscopy, does not require any sample pretreatment or prior extraction of PAH content from the sample, and is reported for the first time herein. The detection of benzo[a]pyrene even at low concentrations in extra virgin olive oil samples demonstrates fluorescence spectroscopy's capability to ensure food safety.


Subject(s)
Benzo(a)pyrene , Polycyclic Aromatic Hydrocarbons , Humans , Olive Oil/chemistry , Spectrometry, Fluorescence , Carcinogens
2.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209139

ABSTRACT

Extra virgin olive oil (EVOO) is a key component of the Mediterranean diet, with several health benefits derived from its consumption. Moreover, due to its eminent market position, EVOO has been thoroughly studied over the last several years, aiming at its authentication, but also to reveal the chemical profile inherent to its beneficial properties. In the present work, a comparative study was conducted to assess Greek EVOOs' quality and authentication utilizing different analytical approaches, both targeted and untargeted. 173 monovarietal EVOOs from three emblematic Greek cultivars (Koroneiki, Kolovi and Adramytiani), obtained during the harvesting years of 2018-2020, were analyzed and quantified as per their fatty acids methyl esters (FAMEs) composition via the official method (EEC) No 2568/91, as well as their bioactive content through liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) methodology. In addition to FAMEs analysis, EVOO samples were also analyzed via HRMS-untargeted metabolomics and optical spectroscopy techniques (visible absorption, fluorescence and Raman). The data retrieved from all applied techniques were analyzed with Machine Learning methods for the authentication of the EVOOs' variety. The models' predictive performance was calculated through test samples, while for further evaluation 30 commercially available EVOO samples were also examined in terms of variety. To the best of our knowledge, this is the first study where different techniques from the fields of standard analysis, spectrometry and optical spectroscopy are applied to the same EVOO samples, providing strong insight into EVOOs chemical profile and a comparative evaluation through the different platforms.


Subject(s)
Food Analysis , Food Quality , Olive Oil/chemistry , Olive Oil/standards , Fatty Acids/analysis , Food Analysis/methods , Food Ingredients/analysis , Greece , Metabolomics/methods , Spectrum Analysis
3.
J Sci Food Agric ; 101(13): 5337-5347, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33650153

ABSTRACT

BACKGROUND: The botanical origin of honey attracts both commercial and research interest. Consumers' preferences and medicinal uses of particular honey types drive the demand for the determination of their authenticity with regard to their botanical origin. This study presents the discrimination of thyme, multi-floral. and honeydew honeys by Fourier-transform infrared (FTIR) and ultraviolet (UV) absorption spectroscopy combined with multivariate statistical analysis. UV absorption spectroscopy was applied without any dilution of the sample using a custom-made cuvette. FTIR and UV absorption spectroscopic data were processed by means of the orthogonal partial least squares discriminant analysis. RESULTS: The optimal classification of floral and honeydew honeys was accomplished with UV spectroscopy with a successful estimation of 92.65% for floral honey and 91.30% for honeydew honey. The discrimination of thyme versus the multi-floral honey was best achieved with FTIR, with a correct classification of 95.56% and 100% for multi-floral and thyme honey respectively. Furthermore, our findings revealed the region of 2400-4000 cm-1 of the FTIR spectra as the most significant for this discrimination. CONCLUSION: This work demonstrates that optical spectroscopic techniques in combination with multivariate statistical analysis can be a rapid, low-cost, easy-to-use approach for the determination of the botanical origin of honey without sample pretreatment. © 2021 Society of Chemical Industry.


Subject(s)
Food Contamination/analysis , Honey/analysis , Spectrum Analysis/methods , Discriminant Analysis , Flowers/chemistry , Multivariate Analysis , Thymus Plant/chemistry
4.
Foods ; 10(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375212

ABSTRACT

The present study was aimed at the identification, differentiation and characterization of red and white Cretan wines, which are described with Protected Geographical Indication (PGI), using ultraviolet-visible absorption spectroscopy. Specifically, the grape variety, the wine aging process and the role of barrel/container type were investigated. The combination of spectroscopic results with machine learning-based modelling demonstrated the use of absorption spectroscopy as a facile and low-cost technique in wine analysis. In this study, a clear discrimination among grape varieties was revealed. Moreover, a grouping of samples according to aging period and container type of maturation was accomplished, for the first time.

5.
Molecules ; 25(18)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932640

ABSTRACT

Olive oil samples from three different Greek regions (Crete, Peloponnese and Lesvos) were examined by optical spectroscopy in a wide spectral region from ultraviolet to near infrared using absorption, fluorescence and Raman spectroscopies. With the aid of machine learning methods, such as multivariate partial least squares discriminant analysis, a clear classification of samples originating from the different Greek geographical regions was revealed. Moreover, samples produced in different subareas of Crete and Peloponnese were also well discriminated. Furthermore, mixtures of olive oils from different geographical origins were studied employing partial least squares as a tool to establish a model between the actual and predicted compositions of the mixtures. The results demonstrated that optical spectroscopy combined with multivariate statistical analysis can be used as an emerging innovative alternative to the classical analytical methods for the identification of the origin and authenticity of olive oils.


Subject(s)
Food Analysis/methods , Olive Oil/chemistry , Spectrophotometry , Discriminant Analysis , Fatty Acids/analysis , Geography , Greece , Least-Squares Analysis , Machine Learning , Multivariate Analysis , Reproducibility of Results , Software , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
6.
Dalton Trans ; 44(22): 10200-9, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25952755

ABSTRACT

The use of N-salicylidene-o-aminophenol (H2saph) in 4f-metal chemistry has led to the isolation of seven new isostructural lanthanide(iii) [Ln(III)] complexes. More specifically the Ln(NO3)3·xH2O/H2saph/Et3N (1 : 1 : 1) reaction mixtures in DMF/MeCN gave complexes [Ln2(NO3)2(saph)2(DMF)4] (Ln = Sm (); Eu (); Gd (); Tb (); Dy (); Ho (); Er ()) in good yields (∼65%). The structures of the isomorphous complexes and were solved by single-crystal X-ray crystallography; the other complexes are proposed to be isostructural with and based on elemental analyses, IR spectra and powder XRD patterns. The two Ln(III) atoms in the centrosymmetric molecules of and are doubly bridged by the deprotonated iminophenolato oxygen atoms of two nearly planar η(1):η(1):η(2):µ saph(2-) ligands. The imino nitrogen and five terminal oxygen atoms (the salicylaldiminate, two from one bidentate chelating nitrato group and two from two DMF ligands) complete square antiprismatic coordination at each metal centre. The IR spectra of the complexes are discussed in terms of the coordination modes of the ligands present in the complexes. Solid-state emission studies for all display identical ligand-based photoluminescence. Dc magnetic susceptibility studies in the 2-300 K range reveal the presence of a weak, intramolecular antiferromagnetic exchange interaction (J = -0.19(1) cm(-1) based on the spin Hamiltonian H = -J(SGd·SGd')) for and probably ferromagnetic exchange interaction within the molecules of and . Ac magnetic susceptibility measurements in zero dc field show temperature- and frequency-dependent out-of-phase signals with two well defined, thermally-activated processes for , suggesting potential single-molecule magnetism character. The Ueff value is 17.4 cm(-1) for the higher temperature process and 16.2 cm(-1) for the lower temperature one. The combination of photoluminescence and single-molecule behaviour in the Dy complex is critically discussed.

7.
Microsc Microanal ; 21(2): 510-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25403929

ABSTRACT

The present work investigates the applicability of nonlinear imaging microscopy for the precise assessment of degradation of the outer protective layers of painted artworks as a function of depth due to aging. Two fresh and artificially aged triterpenoid varnishes, dammar and mastic, were tested. Nonlinear imaging techniques have been employed as a new diagnostic tool for determination of the exact thickness of the affected region due to artificial aging of the natural varnishes. The measured thicknesses differ from the calculated mean penetration depths of the samples. These nondestructive, high resolution modalities are valuable analytical tools for aging studies and they have the potential to provide unique in-depth information. Single photon laser induced fluorescence measurements and Raman spectroscopy were used for the integrated investigation and analysis of aging effects in varnishes.


Subject(s)
Microscopy/methods , Paint/analysis , Paintings , Triterpenes/analysis , Image Processing, Computer-Assisted
8.
J Phys Chem A ; 118(34): 7007-16, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25101870

ABSTRACT

In the current study, the photochemistry of pyrene on solid Al2O3 surface was studied under simulated atmospheric conditions (pressure, 1 atm; temperature, 293 K; photon flux, JNO2 = 0.002-0.012 s(-1)). Experiments were performed using synthetic air or N2 as bath gas to evaluate the impact of O2 to the reaction system. The rate of pyrene photodegradation followed first order kinetics and was enhanced in the presence of O2, kd(synthetic air) = 7.8 ± 0.78 × 10(-2) h(-1) and kd(N2) = 1.2 ± 0.12 × 10(-2) h(-1) respectively, due to the formation of the highly reactive O2(•-) and HO(•) radical species. In addition, kd was found to increase linearly with photon flux. A detailed product study was realized and for the first time the gas/solid phase products of pyrene oxidation were identified using off-line GC-MS and HPLC analysis. In the gas phase, acetone, benzene, and various benzene-ring compounds were determined. In the solid phase, more than 20 photoproducts were identified and their kinetics was followed. Simulation of the concentration profiles of 1- and 2-hydroxypyrene provided an estimation of their yields, 33% and 5.8%, respectively, with respect to consumed pyrene, and their degradation rates were extracted. Finally, the mechanism of heterogeneous photodegradation of pyrene is discussed.

9.
Dalton Trans ; 43(33): 12486-94, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-24819331

ABSTRACT

The use of LH3 (2-(ß-naphthalideneamino)-2-hydroxymethyl-1-propanol) and aibH (2-amino-isobutyric acid) in 4f chemistry has led to the isolation of eight new isostructural lanthanide complexes. More specifically, the reaction of the corresponding lanthanide nitrate salt with LH3 and aibH in MeOH, under solvothermal conditions in the presence of NEt3, led to the isolation and characterization of seven complexes with the general formulae [Ln(III)7(OH)2(L')9(aib)]·4MeOH (Ln = Gd, ·4MeOH; Tb, ·4MeOH; Dy, ·4MeOH; Ho, ·4MeOH; Er, ·4MeOH; Tm, ·4MeOH; Yb, ·4MeOH L' = the dianion of the Schiff base between naphthalene aldehyde and 2-amino-isobutyric acid). Furthermore, the isostructural Y(III) analogue, cluster [Y(III)7(OH)2(L')9(aib)]·4MeOH (·4MeOH), was synthesized in a similar manner to . The structure of all eight clusters describes a distorted [M(III)6] octahedron which encapsulates a seventh M(III) ion in an off-centre fashion. Dc magnetic susceptibility studies in the 5-300 K range for complexes reveal the presence of dominant antiferromagnetic exchange interactions within the metallic clusters as evidenced by the negative Weiss constant, θ, while ac magnetic susceptibility measurements show temperature and frequency dependent out-of-phase signals for the [Dy(III)7] analogue (·4MeOH), suggesting potential single molecule magnetism character. Furthermore, for complex , simulation of its dc magnetic susceptibility data yielded very weak antiferromagnetic interactions within the metallic centres. Solid-state emission studies for all clusters display ligand-based emission, while extended 1D and 2D NMR studies for ·4MeOH reveal that the species retain their structural integrity in solution. In addition, TGA measurements for , and revealed excellent thermal stability up to 340 °C for the clusters.

10.
J Phys Chem A ; 117(48): 12897-911, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24188183

ABSTRACT

The heterogeneous reactions between trace gases and aerosol surfaces have been widely studied over the past decades, revealing the crucial role of these reactions in atmospheric chemistry. However, existing knowledge on the reactivity of mixed aerosols is limited, even though they have been observed in field measurements. In the current study, the heterogeneous interaction of NO2 with solid surfaces of Al2O3 covered with kerosene soot was investigated under dark conditions and in the presence of UV light. Experiments were performed at 293 K using a low-pressure flow-tube reactor coupled with a quadrupole mass spectrometer. The steady-state uptake coefficient, γ(ss), and the distribution of the gas-phase products were determined as functions of the Al2O3 mass; soot mass; NO2 concentration, varied in the range of (0.2-10) × 10(12) molecules cm(-3); photon flux; and relative humidity, ranging from 0.0032% to 32%. On Al2O3/soot surfaces, the reaction rate was substantially increased, and the formation of HONO was favored compared with that on individual pure soot and pure Al2O3 surfaces. Uptake of NO2 was enhanced in the presence of H2O under both dark and UV irradiation conditions, and the following empirical expressions were obtained: γ(ss,BET,dark) = (7.3 ± 0.9) × 10(-7) + (3.2 ± 0.5) × 10(-8) × RH and γ(ss,BET,UV) = (1.4 ± 0.2) × 10(-6) + (4.0 ± 0.9) × 10(-8) × RH. Specific experiments, with solid sample preheating and doping with polycyclic aromatic hydrocarbons (PAHs), showed that UV-absorbing organic compounds significantly affect the chemical reactivity of the mixed mineral/soot surfaces. A mechanistic scheme is proposed, in which Al2O3 can either collect electrons, initiating a sequence of redox reactions, or prevent the charge-recombination process, extending the lifetime of the excited state and enhancing the reactivity of the organics. Finally, the atmospheric implications of the observed results are briefly discussed.


Subject(s)
Aluminum Oxide/chemistry , Atmosphere/chemistry , Nitrogen Dioxide/chemistry , Soot/chemistry , Ultraviolet Rays , Surface Properties
11.
Inorg Chem ; 51(19): 10461-70, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22988931

ABSTRACT

The employment of 2-(ß-naphthalideneamino)-2-(hydroxymethyl)-1-propanol (LH(3)) in cobalt, nickel, and copper chemistry has led to the isolation of five new metallic complexes with interesting magnetic properties. More specifically, the reaction of Co(OAc)(2)·4H(2)O with LH(3) in MeOH in the presence of NEt(3) under solvothermal conditions forms the complex [Co(III)(2)Co(II)(3)(L)(2)(LH)(2)(L')(OAc)]·8.5MeOH (1·8.5MeOH; L' = monoanion of 2-hydroxy-1-naphthaldehyde), while in nickel chemistry, a similar reaction of Ni(OAc)(2)·6H(2)O with LH(3) in MeCN in the presence of NEt(3) under high pressure/temperature forms the complex [Ni(II)(LH(2))(2)]·2MeCN (2·2MeCN). Repeating the same reaction in MeOH and switching from Ni(OAc)(2)·4H(2)O to NiSO(4)·4H(2)O produces the complex [Ni(II)(4)(HL)(3)(OMe)(MeOH)(3)](SO(4))(0.5)·2MeOH (3·2MeOH) under solvothermal conditions. Furthermore, in copper chemistry, the reaction of Cu(2)(OAc)(4)·2H(2)O with LH(3) in the presence of NEt(3) in MeOH under solvothermal conditions affords the complex [Cu(II)(4)(LH)(4)] (4), while the same reaction under ambient temperature and pressure conditions forms [Cu(II)(4)(LH)(4)] ·3.5MeOH·2.25H(2)O (5·3.5MeOH·2.25H(2)O). Complex 1 is a mixed-valent [Co(III)(2)Co(II)(3)] complex, consisting of three edge-sharing [Co(3)] triangles. Complex 2 is a nickel(II) monomer in which the central metal is found in an octahedral geometry, while complex 3 describes a [Ni(II)(4)] cubane. Complexes 4 and 5 may be considered as structural isomers because they possess the same formulas but different topologies: 4 describes a highly distorted [Cu(II)(4)(OR)(4)](4+) eight-membered ring, while 5 consists of a distorted [Cu(II)(4)(µ(3)-OR)(4)](4+) cubane. In addition, 5 can be converted to 4 in excellent yield under solvothermal conditions. Direct-current magnetic susceptibility studies have been carried out in the 5-300 K range for complexes 1 and 3-5, revealing the possibility of a high-spin ground state for 1, an S = 4 ground state for 2, and diamagnetic ground states for 4 and 5.

12.
Inorg Chem ; 51(14): 7451-3, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22747171

ABSTRACT

The employment of 2-(ß-naphthalideneamino)-2-(hydroxymethyl)-1-propanol and 2-aminoisobutyric acid in dysprosium chemistry has led to the isolation of a novel heptanuclear [Dy(III)(7)] cluster displaying single-molecule-magnetism behavior and blue-emitting properties.

13.
Inorg Chem ; 51(10): 5911-8, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22548650

ABSTRACT

Employment of the artificial amino acid 2-amino-isobutyric acid, aibH, in Cu(II) and Cu(II)/Ln(III) chemistry led to the isolation and characterization of 12 new heterometallic heptanuclear [Cu(6)Ln(aib)(6)(OH)(3)(OAc)(3)(NO(3))(3)] complexes consisting of trivalent lanthanide centers within a hexanuclear copper trigonal prism (aibH = 2-amino-butyric acid; Ln = Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10), Tm (11), and Yb (12)). Direct curent magnetic susceptibility studies have been carried out in the 5-300 K range for all complexes, revealing the different nature of the magnetic interactions between the 3d-4f metallic pairs: dominant antiferromagnetic interactions for the majority of the pairs and dominant ferromagnetic interactions for when the lanthanide center is Gd(III) and Dy(III). Furthermore, alternating current magnetic susceptibility studies reveal the possibility of single-molecule magnetism behavior for complexes 7 and 8. Finally, complexes 2, 5-8, 10, and 12 were analyzed using positive ion electrospray mass spectrometry (ES-MS), establishing the structural integrity of the heterometallic heptanuclear cage structure in acetonitrile.


Subject(s)
Aminoisobutyric Acids/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Lanthanoid Series Elements/chemistry , Crystallography, X-Ray , Mass Spectrometry , Models, Molecular
14.
Inorg Chem ; 51(2): 1170-9, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22220944

ABSTRACT

The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.

15.
Anal Bioanal Chem ; 402(4): 1413-32, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21845529

ABSTRACT

Wall paintings spanning two millennia of Cretan painting history and technology were analysed in an effort to determine similarities and evolutions of painting materials and technology. A multi-technique approach was employed that combined the use of (a) laser-induced breakdown spectroscopy (LIBS) and Raman microspectroscopy, based on mobile instrumentation, appropriate for rapid, routine-level object characterization, and (b) non-destructive X-ray diffractometry (XRD), performed directly on the wall painting fragment, which provides detailed information on the minerals constituting the paint. Elemental analysis data obtained through LIBS were compared with molecular and crystal structure information from Raman spectroscopy and XRD. Cross-sections from selected samples were also investigated by means of optical microscopy and scanning electron microscopy coupled to micro-probe analysis and X-ray mapping that enabled identification of several mineral components of the paint confirming the results of the XRD analysis. In parallel, replica wall paintings, created with known pigments and binding media for reference purposes, were examined with optical microscopy and stain tested for organic materials. The overall study shows that the LIBS and Raman techniques offer key advantages, such as instrument mobility and speed of data collection and interpretation that are particularly important when dealing with on-site investigations. Thus, they are capable of providing important compositional information in an effective manner that enables quick surveying of wall paintings and permit targeted sample selection for further analysis by advanced laboratory techniques.

16.
Chem Commun (Camb) ; (12): 1556-8, 2009 Mar 28.
Article in English | MEDLINE | ID: mdl-19277388

ABSTRACT

A hybrid, organic-inorganic ternary semiconductor with chemical formula (H2NC4H8NCH2CH2NH2)2Zn2Sn2Se7 is reported in which the organic molecules have a dual role, acting simultaneously as ligands and charge balancing cations.

SELECTION OF CITATIONS
SEARCH DETAIL
...