Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 52(2): 157-64, 2004 Jan 28.
Article in English | MEDLINE | ID: mdl-14733489

ABSTRACT

Diacylglycerol isomers and free acidity were determined for five extra virgin olive oils of different initial acidities by employing a facile (31)P NMR methodology as a function of storage time and storage conditions. The kinetic treatment of the hydrolysis of triacylglycerols (TGs) and the isomerization of 1,2-diacylglycerols (1,2-DGs) to 1,3-diacylglycerols (1,3-DGs) during storage of 18 months at ambient temperature in the dark and light and at 5 degrees C in the dark showed that the isomerization is strongly dependent on the rate of the TGs hydrolysis, the initial free acidity (H(0)) of the virgin olive oil samples, and storage conditions. Although the time-evolution of the diacylglycerols (DGs) depends on the TGs hydrolysis, the ratio D of the concentration of 1,2-DGs to the total amount of DGs was found to be independent of this factor. From the kinetic expression of the ratio D, a quantitative measure was formulated that allows the estimation of the storage time or age of virgin olive oils. Application of this quantitative measure to several olive oil samples of known and unknown storage history resulted in a very good agreement with respect to the actual storage time for up to 10-12 months of storage. For a longer storage period, where the isomerization of DGs is close to its equilibrium state, the calculated age index is only indicative.


Subject(s)
Diglycerides/chemistry , Food Preservation , Magnetic Resonance Spectroscopy , Plant Oils/chemistry , Diglycerides/analysis , Hydrogen-Ion Concentration , Hydrolysis , Isomerism , Light , Olive Oil , Time Factors
2.
J Agric Food Chem ; 51(19): 5715-22, 2003 Sep 10.
Article in English | MEDLINE | ID: mdl-12952424

ABSTRACT

A combination of (1)H NMR and (31)P NMR spectroscopy and multivariate statistical analysis was used to classify 192 samples from 13 types of vegetable oils, namely, hazelnut, sunflower, corn, soybean, sesame, walnut, rapeseed, almond, palm, groundnut, safflower, coconut, and virgin olive oils from various regions of Greece. 1,2-Diglycerides, 1,3-diglycerides, the ratio of 1,2-diglycerides to total diglycerides, acidity, iodine value, and fatty acid composition determined upon analysis of the respective (1)H NMR and (31)P NMR spectra were selected as variables to establish a classification/prediction model by employing discriminant analysis. This model, obtained from the training set of 128 samples, resulted in a significant discrimination among the different classes of oils, whereas 100% of correct validated assignments for 64 samples were obtained. Different artificial mixtures of olive-hazelnut, olive-corn, olive-sunflower, and olive-soybean oils were prepared and analyzed by (1)H NMR and (31)P NMR spectroscopy. Subsequent discriminant analysis of the data allowed detection of adulteration as low as 5% w/w, provided that fresh virgin olive oil samples were used, as reflected by their high 1,2-diglycerides to total diglycerides ratio (D > or = 0.90).


Subject(s)
Analysis of Variance , Food Contamination , Magnetic Resonance Spectroscopy , Plant Oils/chemistry , Plant Oils/classification , Seeds/chemistry , Fatty Acids/analysis , Iodine/analysis , Mathematics , Olive Oil
SELECTION OF CITATIONS
SEARCH DETAIL
...