Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 13(634)2020 06 02.
Article in English | MEDLINE | ID: mdl-32487716

ABSTRACT

Endothelial dysfunction is a hallmark of tissue injury and is believed to initiate the development of vascular diseases. Sphingosine-1 phosphate receptor-1 (S1P1) plays fundamental physiological roles in endothelial function and lymphocyte homing. Currently available clinical molecules that target this receptor are desensitizing and are essentially S1P1 functional antagonists that cause lymphopenia. They are clinically beneficial in autoimmune diseases such as multiple sclerosis. In patients, several side effects of S1P1 desensitization have been attributed to endothelial damage, suggesting that drugs with the opposite effect, namely, the ability to activate S1P1, could help to restore endothelial homeostasis. We found and characterized a biased agonist of S1P1, SAR247799, which preferentially activated downstream G protein signaling to a greater extent than ß-arrestin and internalization signaling pathways. SAR247799 activated S1P1 on endothelium without causing receptor desensitization and potently activated protection pathways in human endothelial cells. In a pig model of coronary endothelial damage, SAR247799 improved the microvascular hyperemic response without reducing lymphocyte numbers. Similarly, in a rat model of renal ischemia/reperfusion injury, SAR247799 preserved renal structure and function at doses that did not induce S1P1-desensitizing effects, such as lymphopenia and lung vascular leakage. In contrast, a clinically used S1P1 functional antagonist, siponimod, conferred minimal renal protection and desensitized S1P1 These findings demonstrate that sustained S1P1 activation can occur pharmacologically without compromising the immune response, providing a new approach to treat diseases associated with endothelial dysfunction and vascular hyperpermeability.


Subject(s)
Endothelial Cells/metabolism , Kidney Diseases/drug therapy , Kidney/metabolism , Reperfusion Injury/drug therapy , Signal Transduction/drug effects , Sphingosine-1-Phosphate Receptors/agonists , Animals , CHO Cells , Cricetulus , Disease Models, Animal , Humans , Kidney Diseases/genetics , Kidney Diseases/metabolism , Lymphocytes/metabolism , Rats , Reperfusion Injury/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Swine
2.
Cardiovasc Res ; 116(2): 329-338, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31038167

ABSTRACT

AIMS: Despite improvements in patient identification and management, heart failure (HF) remains a major public health burden and an important clinical challenge. A variety of animal and human studies have provided evidence suggesting a central role of calcium/calmodulin-dependent protein kinase II (CaMKII) in the development of pathological cardiac remodelling and HF. Here, we describe a new potent, selective, and orally available CaMKII inhibitor. METHODS AND RESULTS: Chemical optimization led to the identification of RA306 as a selective CaMKII inhibitor. This compound was found potent on the cardiac CaMKII isoforms delta and gamma (IC50 in the 10 nM range), with pharmacokinetic properties allowing oral administration in animal models of HF. RA306 was administered to diseased mice carrying a mutation in alpha-actin that is responsible for dilated cardiomyopathy (DCM) in humans. In two separate studies, RA306 was orally administered at 30 mg/kg either for 2 weeks (twice a day) or for 2 months (once a day). Echocardiography monitoring showed that RA306 significantly improved cardiac function (ejection fraction and cardiac output) as compared to vehicle. These disease modifying effects of RA306 were associated with inhibition of cardiac phosphorylation of phospholamban (PLN) at threonine-17, indicating reduced cardiac CaMKII activity. CONCLUSION: This work supports the feasibility of identifying potent orally available CaMKII inhibitors suitable for clinical use to treat heart disease.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Cardiomyopathy, Dilated/drug therapy , Morpholines/administration & dosage , Myocytes, Cardiac/drug effects , Protein Kinase Inhibitors/administration & dosage , Stroke Volume/drug effects , Ventricular Function, Left/drug effects , Actins/genetics , Administration, Oral , Animals , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cells, Cultured , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Mice, Transgenic , Morpholines/pharmacokinetics , Mutation , Myocytes, Cardiac/enzymology , Phosphorylation , Protein Kinase Inhibitors/pharmacokinetics , Rats , Recovery of Function
SELECTION OF CITATIONS
SEARCH DETAIL
...