Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oncol Res Treat ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583422

ABSTRACT

INTRODUCTION: Naked DNA vaccination could be a powerful and safe strategy to mount antigen-specific cellular immunity. We designed a phase I clinical trial to investigate the toxicity of naked DNA vaccines encoding CD8+ T-cell epitope from tumor-associated antigen MART-1 in patients with advanced melanoma. METHODS: This dose escalating phase Ia clinical trial investigates the toxicity and immunological response upon naked DNA vaccines encoding a CD8+ T-cell epitope from the tumor-associated antigen MART-1, genetically linked to the gene encoding domain 1 of subunit-tetanus toxin fragment C in patients with advanced melanoma (inoperable stage IIIC-IV, AJCC 7th edition). The vaccine was administrated via intradermal application using a permanent make-up or tattoo device. Safety was monitored according to CTCAE v.3.0 and skin biopsies and blood samples were obtained for immunologic monitoring. RESULTS: Nine pretreated, HLA-A*0201-positive patients with advanced melanoma expressing MART-1 and MHC class I, with a good performance status, and adequate organ function, were included. With a median follow-up of 5.9 months, DNA vaccination was safe, without treatment-related deaths. Common treatment-emergent adverse events of any grade were dermatologic reactions at the vaccination site (100%) and pain (56%). One patient experienced grade 4 toxicity, most likely related to tumor progression. One patient (11%) achieved stable disease, lasting 353 days. Immune analysis showed no increase in vaccine-induced T cell response in peripheral blood of five patients, but did show a MART-1 specific CD8+ T cell response at the tattoo administration site. The maximum dose administered was 2 mg due to lack of clinical activity. CONCLUSION: We showed that the developed DNA vaccine, applied using a novel intradermal application strategy, can be administered safely. Further research with improved vaccine formats is required to show possible clinical benefit of DNA vaccination.

2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34670835

ABSTRACT

Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have revolutionized the treatment of melanoma patients. Based on early studies addressing the mechanism of action, it was assumed that PD-1 blockade mostly influences T cell responses at the tumor site. However, recent work has demonstrated that PD-1 blockade can influence the T cell compartment in peripheral blood. If the activation of circulating, tumor-reactive T cells would form an important mechanism of action of PD-1 blockade, it may be predicted that such blockade would alter either the frequency and/or the breadth of the tumor-reactive CD8 T cell response. To address this question, we analyzed CD8 T cell responses toward 71 melanoma-associated epitopes in peripheral blood of 24 melanoma patients. We show that both the frequency and the breadth of the circulating melanoma-reactive CD8 T cell response was unaltered upon PD-1 blockade. In contrast, a broadening of the circulating melanoma-reactive CD8 T cell response was observed upon CTLA-4 blockade, in concordance with our prior data. Based on these results, we conclude that PD-1 and CTLA-4 blockade have distinct mechanisms of action. In addition, the data provide an argument in favor of the hypothesis that anti-PD-1 therapy may primarily act at the tumor site.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/drug therapy , Melanoma/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Cohort Studies , Epitopes, T-Lymphocyte/blood , Epitopes, T-Lymphocyte/immunology , Female , Hepatitis A Virus Cellular Receptor 2/blood , Hepatitis A Virus Cellular Receptor 2/immunology , Humans , In Vitro Techniques , Kinetics , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Melanoma-Specific Antigens/blood , Melanoma-Specific Antigens/immunology , Middle Aged , Receptors, Antigen, T-Cell, alpha-beta/blood , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, CXCR5/blood , Receptors, CXCR5/immunology
3.
Nat Cancer ; 1(3): 291-301, 2020 03.
Article in English | MEDLINE | ID: mdl-32566933

ABSTRACT

T cell-secreted IFNγ can exert pleiotropic effects on tumor cells that include induction of immune checkpoints and antigen presentation machinery components, and inhibition of cell growth. Despite its role as key effector molecule, little is known about the spatiotemporal spreading of IFNγ secreted by activated CD8+ T cells within the tumor environment. Using multiday intravital imaging, we demonstrate that T cell recognition of a minor fraction of tumor cells leads to sensing of IFNγ by a large part of the tumor mass. Furthermore, imaging of tumors in which antigen-positive and -negative tumor cells are separated in space reveals spreading of the IFNγ response, reaching distances of >800 µm. Notably, long-range sensing of IFNγ can modify tumor behavior, as both shown by induction of PD-L1 expression and inhibition of tumor growth. Collectively, these data reveal how, through IFNγ, CD8+ T cells modulate the behavior of remote tumor cells, including antigen-loss variants.


Subject(s)
CD8-Positive T-Lymphocytes
5.
Nat Med ; 24(11): 1655-1661, 2018 11.
Article in English | MEDLINE | ID: mdl-30297911

ABSTRACT

Adjuvant ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) both improve relapse-free survival of stage III melanoma patients1,2. In stage IV disease, the combination of ipilimumab + nivolumab is superior to ipilimumab alone and also appears to be more effective than nivolumab monotherapy3. Preclinical work suggests that neoadjuvant application of checkpoint inhibitors may be superior to adjuvant therapy4. To address this question and to test feasibility, 20 patients with palpable stage III melanoma were 1:1 randomized to receive ipilimumab 3 mg kg-1 and nivolumab 1 mg kg-1, as either four courses after surgery (adjuvant arm) or two courses before surgery and two courses postsurgery (neoadjuvant arm). Neoadjuvant therapy was feasible, with all patients undergoing surgery at the preplanned time point. However in both arms, 9/10 patients experienced one or more grade 3/4 adverse events. Pathological responses were achieved in 7/9 (78%) patients treated in the neoadjuvant arm. None of these patients have relapsed so far (median follow-up, 25.6 months). We found that neoadjuvant ipilimumab + nivolumab expand more tumor-resident T cell clones than adjuvant application. While neoadjuvant therapy appears promising, with the current regimen it induced high toxicity rates; therefore, it needs further investigation to preserve efficacy but reduce toxicity.


Subject(s)
Chemotherapy, Adjuvant/methods , Ipilimumab/administration & dosage , Melanoma/drug therapy , Nivolumab/administration & dosage , Adult , Aged , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Chemotherapy, Adjuvant/adverse effects , Disease-Free Survival , Humans , Ipilimumab/adverse effects , Male , Melanoma/pathology , Melanoma/surgery , Middle Aged , Neoadjuvant Therapy/adverse effects , Neoplasm Staging , Nivolumab/adverse effects
6.
Cancer Immunol Immunother ; 66(9): 1163-1173, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28451790

ABSTRACT

BACKGROUND: Usual type vulvar intraepithelial neoplasia (uVIN) is caused by HPV, predominantly type 16. Several forms of HPV immunotherapy have been studied, however, clinical results could be improved. A novel intradermal administration route, termed DNA tattooing, is superior in animal models, and was tested for the first time in humans with a HPV16 E7 DNA vaccine (TTFC-E7SH). METHODS: The trial was designed to test safety, immunogenicity, and clinical response of TTFC-E7SH in twelve HPV16+ uVIN patients. Patients received six vaccinations via DNA tattooing. The first six patients received 0.2 mg TTFC-E7SH and the next six 2 mg TTFC-E7SH. Vaccine-specific T-cell immunity was evaluated by IFNγ-ELISPOT and multiparametric flow cytometry. RESULTS: Only grade I-II adverse events were observed upon TTFC-E7SH vaccination. The ELISPOT analysis showed in 4/12 patients a response to the peptide pool containing shuffled E7 peptides. Multiparametric flow cytometry showed low CD4+ and/or CD8+ T-cell responses as measured by increased expression of PD-1 (4/12 in both), CTLA-4 (2/12 and 3/12), CD107a (5/12 and 4/12), or the production of IFNγ (2/12 and 1/12), IL-2 (3/12 and 4/12), TNFα (2/12 and 1/12), and MIP1ß (3/12 and 6/12). At 3 months follow-up, no clinical response was observed in any of the twelve vaccinated patients. CONCLUSION: DNA tattoo vaccination was shown to be safe. A low vaccine-induced immune response and no clinical response were observed in uVIN patients after TTFC-E7SH DNA tattoo vaccination. Therefore, a new phase I/II trial with an improved DNA vaccine format is currently in development for patients with uVIN.


Subject(s)
DNA/genetics , Human papillomavirus 16/genetics , Oncogene Proteins, Viral/immunology , Vaccines, DNA/immunology , Vulvar Neoplasms/genetics , Adult , Female , Humans , Middle Aged , Vulvar Neoplasms/therapy
7.
Methods Mol Biol ; 1514: 93-101, 2017.
Article in English | MEDLINE | ID: mdl-27787794

ABSTRACT

The development of peptide loaded major histocompatibility complexes (MHC) conjugated to fluorochromes by Davis and colleagues 20 years ago provided a highly useful tool to identify and characterize antigen-specific T cells. In this chapter we describe a multiplexing strategy that allows detection of high numbers of T cell responses in parallel.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Flow Cytometry/methods , HLA Antigens/immunology , T-Lymphocytes/immunology , Genes, MHC Class I/immunology , Humans , Peptides/immunology , Protein Binding/immunology
8.
Eur J Immunol ; 46(6): 1351-60, 2016 06.
Article in English | MEDLINE | ID: mdl-27005018

ABSTRACT

Tumor infiltrating lymphocyte (TIL) therapy has shown objective clinical response rates of 50% in stage IV melanoma patients in a number of clinical trials. Nevertheless, the majority of patients progress either directly upon therapy or after an initial period of tumor control. Recent data have shown that most TIL products that are used for therapy contain only low frequencies of T cells reactive against known melanoma-associated epitopes. Because of this, the development of a technology to create T-cell products that are enriched for reactivity against defined melanoma-associated antigens would seem valuable, both to evaluate the tumoricidal potential of T cells directed against different antigen classes and to potentially increase response rates. Here, we developed and validated a conditional MHC streptamer-based platform for the creation of TIL products with defined antigen reactivities. We have used this platform to successfully enrich both high-frequency (≥1%) and low-frequency (<1%) tumor-specific CD8(+) T-cell populations, and thereby created T-cell products with enhanced tumor recognition potential. Collectively, these data demonstrate that selection of antigen-specific T-cell populations can be used to create defined T-cell products for clinical use. This strategy thus forms a highly flexible platform for the development of antigen-specific cell products for personalized cancer immunotherapy.


Subject(s)
Antigens, Neoplasm/immunology , Immunotherapy , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Melanoma/therapy , T-Cell Antigen Receptor Specificity/immunology , Biomarkers , Cell Culture Techniques , Cell Line, Tumor , Cytotoxicity, Immunologic , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/metabolism , HLA Antigens/chemistry , HLA Antigens/genetics , HLA Antigens/immunology , HLA Antigens/metabolism , Humans , Immunophenotyping , Immunotherapy/methods , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/genetics , Melanoma/metabolism , Precision Medicine/methods , Protein Binding , Protein Multimerization/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
9.
Sci Transl Med ; 6(254): 254ra128, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25232180

ABSTRACT

Anti-CTLA-4 treatment improves the survival of patients with advanced-stage melanoma. However, although the anti-CTLA-4 antibody ipilimumab is now an approved treatment for patients with metastatic disease, it remains unknown by which mechanism it boosts tumor-specific T cell activity. In particular, it is unclear whether treatment amplifies previously induced T cell responses or whether it induces new tumor-specific T cell reactivities. Using a combination ultraviolet (UV)-induced peptide exchange and peptide-major histocompatibility complex (pMHC) combinatorial coding, we monitored immune reactivity against a panel of 145 melanoma-associated epitopes in a cohort of patients receiving anti-CTLA-4 treatment. Comparison of pre- and posttreatment T cell reactivities in peripheral blood mononuclear cell samples of 40 melanoma patients demonstrated that anti-CTLA-4 treatment induces a significant increase in the number of detectable melanoma-specific CD8 T cell responses (P = 0.0009). In striking contrast, the magnitude of both virus-specific and melanoma-specific T cell responses that were already detected before start of therapy remained unaltered by treatment (P = 0.74). The observation that anti-CTLA-4 treatment induces a significant number of newly detected T cell responses-but only infrequently boosts preexisting immune responses-provides strong evidence for anti-CTLA-4 therapy-enhanced T cell priming as a component of the clinical mode of action.


Subject(s)
Antibodies, Monoclonal/therapeutic use , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Immunotherapy , Melanoma/therapy , Antibodies, Monoclonal/immunology , Humans , Ipilimumab , Melanoma/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...