Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
2.
Diabetologia ; 67(5): 940-951, 2024 May.
Article in English | MEDLINE | ID: mdl-38366195

ABSTRACT

AIMS/HYPOTHESIS: The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS: A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS: Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION: Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.


Subject(s)
Congenital Hyperinsulinism , Diabetes, Gestational , Potassium Channels, Inwardly Rectifying , Infant, Newborn , Adult , Middle Aged , Female , Pregnancy , Humans , Potassium Channels, Inwardly Rectifying/genetics , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Congenital Hyperinsulinism/genetics , Sulfonylurea Compounds/therapeutic use , Mutation/genetics , Glyburide , Adenosine Triphosphate/metabolism
3.
JCEM Case Rep ; 2(2): luae003, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38304011

ABSTRACT

The 1p36 deletion syndrome involves a phenotypic presentation that includes central nervous system, cardiac, and craniofacial anomalies. We report the case of a 21-year-old female patient with 1p36 deletion syndrome who was found to have noninsulinoma pancreatogenous hypoglycemia syndrome (NIPHS) after hospitalization for persistent falls. On admission, vital signs were normal and physical examination revealed a thin, nonverbal patient. During hospitalization and prolonged fasting (14-18 hours), she persistently developed hypoglycemia (serum glucose nadir 57 mg/dL [3.2 mmol/L] [70-100 mg/dL; 3.9-5.6 mmol/L]). Subjective symptoms of hypoglycemia were not confirmed due to patient's cognitive impairment. Hypoglycemic events continued despite feeding and dextrose-containing fluids. Further workup included a critical sample that revealed a serum glucose 59 mg/dL (3.3 mmol/L), insulin 20.6 µIU/mL (123.6 pmol/L [5-15 µIU/mL; 30.0-90 pmol/L]), proinsulin 33 pmol/L (3.6-22 pmol/L), C-peptide 1.74 ng/mL (0.58 nmol/L [0.8-3.85 ng/mL; 0.27-1.28 nmol/L]) and beta-hydroxybutyrate < 1.04 mg/dL (< 0.10 mmol/L; [< 4.2 mg/dL; < 0.4 mmol/L]). Insulin antibodies were negative. After confirmed insulin-mediated hypoglycemia, imaging studies followed. Pancreatic protocol abdominal computed tomography (CT), Ga-68 DOTATATE PET/CT scan, and endoscopic ultrasound found no pancreatic mass. Selective arterial calcium stimulation test showed a two-fold increase in insulin levels in 3/3 catheterized pancreatic territories. The patient started octreotide injections with resolution of hypoglycemia and was discharged on monthly lanreotide injections. To our knowledge, this is the first case reported of noninsulinoma pancreatogenous hypoglycemia in a patient with 1p36 deletion syndrome.

4.
Diabetes Care ; 47(3): 393-400, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38151474

ABSTRACT

OBJECTIVE: This multicenter prospective cohort study compared pancreas volume as assessed by MRI, metabolic scores derived from oral glucose tolerance testing (OGTT), and a combination of pancreas volume and metabolic scores for predicting progression to stage 3 type 1 diabetes (T1D) in individuals with multiple diabetes-related autoantibodies. RESEARCH DESIGN AND METHODS: Pancreas MRI was performed in 65 multiple autoantibody-positive participants enrolled in the Type 1 Diabetes TrialNet Pathway to Prevention study. Prediction of progression to stage 3 T1D was assessed using pancreas volume index (PVI), OGTT-derived Index60 score and Diabetes Prevention Trial-Type 1 Risk Score (DPTRS), and a combination of PVI and DPTRS. RESULTS: PVI, Index60, and DPTRS were all significantly different at study entry in 11 individuals who subsequently experienced progression to stage 3 T1D compared with 54 participants who did not experience progression (P < 0.005). PVI did not correlate with metabolic testing across individual study participants. PVI declined longitudinally in the 11 individuals diagnosed with stage 3 T1D, whereas Index60 and DPTRS increased. The area under the receiver operating characteristic curve for predicting progression to stage 3 from measurements at study entry was 0.76 for PVI, 0.79 for Index60, 0.79 for DPTRS, and 0.91 for PVI plus DPTRS. CONCLUSIONS: These findings suggest that measures of pancreas volume and metabolism reflect distinct components of risk for developing stage 3 type 1 diabetes and that a combination of these measures may provide superior prediction than either alone.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/diagnosis , Prospective Studies , Pancreas/diagnostic imaging , Pancreas/metabolism , Risk Factors , Autoantibodies , Magnetic Resonance Imaging
5.
J Endocr Soc ; 7(3): bvac182, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36655002

ABSTRACT

Given the close anatomical and physiological links between the exocrine and endocrine pancreas, diseases of 1 compartment often affect the other through mechanisms that remain poorly understood. Pancreatitis has been associated with both type 1 and type 2 diabetes, but its association with monogenic diabetes is unknown. Patients heterozygous for pathogenic CFTR variants are cystic fibrosis carriers and have been reported to have an increased risk of acute pancreatitis. We describe a 12-year-old patient with monogenic neonatal diabetes due to a pathogenic heterozygous paternally inherited mutation of the insulin gene (INS), c.94 G > A (p.Gly32Ser), who experienced 3 recurrent episodes of acute pancreatitis over 7 months in conjunction with poor glycemic control, despite extensive efforts to improve glycemic control in the past 4 years. Intriguingly, the maternal side of the family has an extensive history of adult-onset pancreatitis consistent with autosomal dominant inheritance and the proband is heterozygous for a maternally inherited, CFTR variant c.3909C > G (p.Asn1303Lys). Paternally inherited monogenic neonatal diabetes may have promoted earlier age-of-onset of pancreatitis in this pediatric patient compared to maternal relatives with adult-onset acute pancreatitis. Further study is needed to clarify how separate pathophysiologies associated with INS and CFTR mutations influence interactions between the endocrine and exocrine pancreas.

6.
Diabetes Care ; 46(3): 608-612, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36637968

ABSTRACT

OBJECTIVE: To examine sleep patterns in adults with maturity-onset diabetes of the young (MODY). RESEARCH DESIGN AND METHODS: Adults with glucokinase (GCK)-MODY and transcription factor (TF)-related MODY (HNF1A, HNF1B, HNF4A) were recruited (n = 24; age 46.0 years, 79% women, BMI 24.7 kg/m2) from The University of Chicago's Monogenic Diabetes Registry. Sleep patterns were assessed by 2-week wrist actigraphy (total 315 nights), one night of a home sleep apnea test, and validated surveys. RESULTS: Overall, compared with established criteria, 29% of participants had sleep latency ≥15 min, 38% had sleep efficiency ≤85%, 46% had wake after sleep onset >40 min, all indicating poor objective sleep quality. Among all participants, 54% had a sleep duration below the recommended minimum of 7 h, 88% reported poor sleep quality, 58% had obstructive sleep apnea, and 71% reported insomnia. Compared with GCK-MODY, participants with TF-related MODY had poorer objective sleep quality and increased night-to-night variability in sleep patterns. CONCLUSIONS: Sleep disturbances appear to be common in adults with MODY despite absent traditional risk factors for sleep disorders. Future research investigating the sleep-diabetes relationship is warranted in this population.


Subject(s)
Diabetes Mellitus, Type 2 , Sleep Disorders, Intrinsic , Sleep , Female , Humans , Male , Middle Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Glucokinase/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Mutation , Risk Factors , Sleep Disorders, Intrinsic/etiology
7.
J Clin Transl Sci ; 7(1): e263, 2023.
Article in English | MEDLINE | ID: mdl-38229904

ABSTRACT

Stress and diabetes coexist in a vicious cycle. Different types of stress lead to diabetes, while diabetes itself is a major life stressor. This was the focus of the Chicago Biomedical Consortium's 19th annual symposium, "Stress and Human Health: Diabetes," in November 2022. There, researchers primarily from the Chicago area met to explore how different sources of stress - from the cells to the community - impact diabetes outcomes. Presenters discussed the consequences of stress arising from mutant proteins, obesity, sleep disturbances, environmental pollutants, COVID-19, and racial and socioeconomic disparities. This symposium showcased the latest diabetes research and highlighted promising new treatment approaches for mitigating stress in diabetes.

8.
J Diabetes Investig ; 13(9): 1465-1471, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35638342

ABSTRACT

Maturity-onset of diabetes of the young (MODY) are monogenic forms of diabetes characterized by early onset diabetes with autosomal dominant inheritance. Since its first description about six decades ago, there have been significant advancements in our understanding of MODY from clinical presentations to molecular diagnostics and therapeutic responses. The prevalence of MODY is estimated as at least 1.1-6.5% of the pediatric diabetes population with a high degree of geographic variability that might arise from several factors in the criteria used to ascertain cases. GCK-MODY, HNF1A-MODY, and HNF4A-MODY account for >90% of MODY cases. While some MODY forms do not require treatment (i.e., GCK-MODY), some others are highly responsive to oral agents (i.e., HNF1A-MODY). The risk of micro- and macro-vascular complications of diabetes also differ significantly between MODY forms. Despite its high clinical impact, 50-90% of MODY cases are estimated to be misdiagnosed as type 1 or type 2 diabetes. Although there are many clinical features suggestive of MODY diagnosis, there is no single clinical criterion. An online MODY Risk Calculator can be a useful tool for clinicians in the decision-making process for MODY genetic testing in some situations. Molecular genetic tests with a commercial gene panel should be performed in cases with a suspicion of MODY. Unresolved atypical cases can be further studied by exome or genome sequencing in a clinical or research setting, as available.


Subject(s)
Diabetes Mellitus, Type 2 , Child , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Genetic Testing , Humans , Mutation
9.
Diabetes Technol Ther ; 24(6): 424-434, 2022 06.
Article in English | MEDLINE | ID: mdl-35294272

ABSTRACT

Objective: To evaluate glycemic outcomes in the Wireless Innovation for Seniors with Diabetes Mellitus (WISDM) randomized clinical trial (RCT) participants during an observational extension phase. Research Design and Methods: WISDM RCT was a 26-week RCT comparing continuous glucose monitoring (CGM) with blood glucose monitoring (BGM) in 203 adults aged ≥60 years with type 1 diabetes. Of the 198 participants who completed the RCT, 100 (98%) CGM group participants continued CGM (CGM-CGM cohort) and 94 (98%) BGM group participants initiated CGM (BGM-CGM cohort) for an additional 26 weeks. Results: CGM was used a median of >90% of the time at 52 weeks in both cohorts. In the CGM-CGM cohort, median time <70 mg/dL decreased from 5.0% at baseline to 2.6% at 26 weeks and remained stable with a median of 2.8% at 52 weeks (P < 0.001 baseline to 52 weeks). Participants spent more time in range 70-180 mg/dL (TIR) (mean 56% vs. 64%; P < 0.001) and had lower hemoglobin A1c (HbA1c) (mean 7.6% [59 mmol/mol] vs. 7.4% [57 mmol/mol]; P = 0.01) from baseline to 52 weeks. In BGM-CGM, from 26 to 52 weeks median time <70 mg/dL decreased from 3.9% to 1.9% (P < 0.001), TIR increased from 56% to 60% (P = 0.006) and HbA1c decreased from 7.5% (58 mmol/mol) to 7.3% (57 mmol/mol) (P = 0.025). In BGM-CGM, a severe hypoglycemic event was reported for nine participants while using BGM during the RCT and for two participants during the extension phase with CGM (P = 0.02). Conclusions: CGM use reduced hypoglycemia without increasing hyperglycemia in older adults with type 1 diabetes. These data provide further evidence for fully integrating CGM into clinical practice. Clinicaltrials.gov (NCT03240432).


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Aged , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus, Type 1/drug therapy , Glycated Hemoglobin/analysis , Humans , Hypoglycemia/prevention & control , Hypoglycemic Agents/therapeutic use
11.
J Gen Intern Med ; 37(2): 415-438, 2022 02.
Article in English | MEDLINE | ID: mdl-34508290

ABSTRACT

BACKGROUND: Previous meta-analyses of the benefits and harms of glucagon-like peptide-1 receptor agonists (GLP1RAs) have been limited to specific outcomes and comparisons and often included short-term results. We aimed to estimate the longer-term effects of GLP1RAs on cardiovascular risk factors, microvascular and macrovascular complications, mortality, and adverse events in patients with type 2 diabetes, compared to placebo and other anti-hyperglycemic medications. METHODS: We searched PubMed, Scopus, and clinicaltrials.gov (inception-July 2019) for randomized controlled trials ≥ 52 weeks' duration that compared a GLP1RA to placebo or other anti-hyperglycemic medication and included at least one outcome of interest. Outcomes included cardiovascular risk factors, microvascular and macrovascular complications, all-cause mortality, and treatment-related adverse events. We performed random effects meta-analyses to give summary estimates using weighted mean differences (MD) and pooled relative risks (RR). Risk of bias was assessed using the Cochrane Collaboration risk of bias in randomized trials tool. Quality of evidence was summarized using the Grading of Recommendations, Assessment, Development, and Evaluation approach. The study was registered a priori with PROSPERO (CRD42018090506). RESULTS: Forty-five trials with a mean duration of 1.7 years comprising 71,517 patients were included. Compared to placebo, GLP1RAs reduced cardiovascular risk factors, microvascular complications (including renal events, RR 0.85, 0.80-0.90), macrovascular complications (including stroke, RR 0.86, 0.78-0.95), and mortality (RR 0.89, 0.84-0.94). Compared to other anti-hyperglycemic medications, GLP1RAs only reduced cardiovascular risk factors. Increased gastrointestinal events causing treatment discontinuation were observed in both comparisons. DISCUSSION: GLP1RAs reduced cardiovascular risk factors and increased gastrointestinal events compared to placebo and other anti-hyperglycemic medications. GLP1RAs also reduced MACE, stroke, renal events, and mortality in comparisons with placebo; however, analyses were inconclusive for comparisons with other anti-hyperglycemic medications. Given the high costs of GLP1RAs, the lack of long-term evidence comparing GLP1RAs to other anti-hyperglycemic medications has significant policy and clinical practice implications.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/therapeutic use , Humans , Hypoglycemic Agents/adverse effects
12.
J Gen Intern Med ; 37(2): 439-448, 2022 02.
Article in English | MEDLINE | ID: mdl-34850334

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter-2 inhibitors (SGLT2Is) are a recent class of medication approved for the treatment of type 2 diabetes (T2D). Previous meta-analyses have quantified the benefits and harms of SGLT2Is; however, these analyses have been limited to specific outcomes and comparisons and included trials of short duration. We comprehensively reviewed the longer-term benefits and harms of SGLT2Is compared to placebo or other anti-hyperglycemic medications. METHODS: We searched PubMed, Scopus, and clinicaltrials.gov from inception to July 2019 for randomized controlled trials of minimum 52 weeks' duration that enrolled adults with T2D, compared an SGLT2I to either placebo or other anti-hyperglycemic medications, and reported at least one outcome of interest including cardiovascular risk factors, microvascular and macrovascular complications, mortality, and adverse events. We conducted random effects meta-analyses to provide summary estimates using weighted mean differences (MD) and pooled relative risks (RR). The study was registered a priori with PROSPERO (CRD42018090506). RESULTS: Fifty articles describing 39 trials (vs. placebo, n = 28; vs. other anti-hyperglycemic medication, n = 12; vs. both, n = 1) and 112,128 patients were included in our analyses. Compared to placebo, SGLT2Is reduced cardiovascular risk factors (e.g., hemoglobin A1c, MD - 0.55%, 95% CI - 0.62, - 0.49), macrovascular outcomes (e.g., hospitalization for heart failure, RR 0.70, 95% CI 0.62, 0.78), and mortality (RR 0.87, 95% CI 0.80, 0.94). Compared to other anti-hyperglycemic medications, SGLT2Is reduced cardiovascular risk factors, but insufficient data existed for other outcomes. About a fourfold increased risk of genital yeast infections for both genders was observed for comparisons vs. placebo and other anti-hyperglycemic medications. DISCUSSION: We found that SGLT2Is led to durable reductions in cardiovascular risk factors compared to both placebo and other anti-hyperglycemic medications. Reductions in macrovascular complications and mortality were only observed in comparisons with placebo, although trials comparing SGLT2Is vs. other anti-hyperglycemic medications were not designed to assess longer-term outcomes.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Adult , Diabetes Mellitus, Type 2/complications , Female , Glucose/therapeutic use , Humans , Male , Risk Assessment , Sodium/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
13.
J Endocr Soc ; 5(12): bvab162, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34870058

ABSTRACT

Clinical and pathologic heterogeneity in type 1 diabetes is increasingly being recognized. Findings in the islets and pancreas of a 22-year-old male with 8 years of type 1 diabetes were discordant with expected results and clinical history (islet autoantibodies negative, hemoglobin A1c 11.9%) and led to comprehensive investigation to define the functional, molecular, genetic, and architectural features of the islets and pancreas to understand the cause of the donor's diabetes. Examination of the donor's pancreatic tissue found substantial but reduced ß-cell mass with some islets devoid of ß cells (29.3% of 311 islets) while other islets had many ß cells. Surprisingly, isolated islets from the donor pancreas had substantial insulin secretion, which is uncommon for type 1 diabetes of this duration. Targeted and whole-genome sequencing and analysis did not uncover monogenic causes of diabetes but did identify high-risk human leukocyte antigen haplotypes and a genetic risk score suggestive of type 1 diabetes. Further review of pancreatic tissue found islet inflammation and some previously described α-cell molecular features seen in type 1 diabetes. By integrating analysis of isolated islets, histological evaluation of the pancreas, and genetic information, we concluded that the donor's clinical insulin deficiency was most likely the result autoimmune-mediated ß-cell loss but that the constellation of findings was not typical for type 1 diabetes. This report highlights the pathologic and functional heterogeneity that can be present in type 1 diabetes.

14.
Sci Rep ; 11(1): 21590, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732776

ABSTRACT

The gene KCNJ11 encodes Kir6.2 a major subunit of the ATP-sensitive potassium channel (KATP) expressed in both the pancreas and brain. Heterozygous gain of function mutations in KCNJ11 can cause neonatal diabetes mellitus (NDM). In addition, many patients exhibit neurological defects ranging from modest learning disorders to severe cognitive dysfunction and seizures. However, it remains unclear to what extent these neurological deficits are due to direct brain-specific activity of mutant KATP. We have generated cerebral organoids derived from human induced pluripotent stem cells (hiPSCs) possessing the KCNJ11 mutation p.Val59Met (V59M) and from non-pathogenic/normal hiPSCs (i.e., control/WT). Control cerebral organoids developed neural networks that could generate stable synchronized bursting neuronal activity whereas those derived from V59M cerebral organoids showed reduced synchronization. Histocytochemical studies revealed a marked reduction in neurons localized to upper cortical layer-like structures in V59M cerebral organoids suggesting dysfunction in the development of cortical neuronal network. Examination of temporal transcriptional profiles of neural stem cell markers revealed an extended window of SOX2 expression in V59M cerebral organoids. Continuous treatment of V59M cerebral organoids with the KATP blocker tolbutamide partially rescued the neurodevelopmental differences. Our study demonstrates the utility of human cerebral organoids as an investigative platform for studying the effects of KCNJ11 mutations on neurophysiological outcome.


Subject(s)
Brain/metabolism , Organoids/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Adult , Brain/physiopathology , Cell Culture Techniques , Diabetes Mellitus/metabolism , Electrophysiology , Female , Fibroblasts/metabolism , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/cytology , Infant, Newborn , Infant, Newborn, Diseases/genetics , Leukocytes, Mononuclear/cytology , Microscopy, Confocal , Nerve Net , Neural Pathways , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/metabolism
15.
Diabetes Care ; 44(8): 1816-1825, 2021 08.
Article in English | MEDLINE | ID: mdl-34172489

ABSTRACT

OBJECTIVE: Multiple genome-wide association studies have identified a strong genetic linkage between the SKAP2 locus and type 1 diabetes (T1D), but how this leads to disease remains obscure. Here, we characterized the functional consequence of a novel SKAP2 coding mutation in a patient with T1D to gain further insight into how this impacts immune tolerance. RESEARCH DESIGN AND METHODS: We identified a 24-year-old individual with T1D and other autoimmune and inflammatory conditions. The proband and first-degree relatives were recruited for whole-exome sequencing. Functional studies of the protein variant were performed using a cell line and primary myeloid immune cells collected from family members. RESULTS: Sequencing identified a de novo SKAP2 variant (c.457G>A, p.Gly153Arg) in the proband. Assays using monocyte-derived macrophages from the individual revealed enhanced activity of integrin pathways and a migratory phenotype in the absence of chemokine stimulation, consistent with SKAP2 p.Gly153Arg being constitutively active. The p.Gly153Arg variant, located in the well-conserved lipid-binding loop, induced similar phenotypes when expressed in a human macrophage cell line. SKAP2 p.Gly153Arg is a gain-of-function, pathogenic mutation that disrupts myeloid immune cell function, likely resulting in a break in immune tolerance and T1D. CONCLUSIONS: SKAP2 plays a key role in myeloid cell activation and migration. This particular mutation in a patient with T1D and multiple autoimmune conditions implicates a role for activating SKAP2 variants in autoimmune T1D.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Intracellular Signaling Peptides and Proteins , Adult , Diabetes Mellitus, Type 1/genetics , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Phenotype , Young Adult
16.
Adv Mater ; 33(25): e2100026, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33984170

ABSTRACT

Recently developed methods for transforming 2D patterns of thin-film materials into 3D mesostructures create many interesting opportunities in microsystems design. A growing area of interest is in multifunctional thermal, electrical, chemical, and optical interfaces to biological tissues, particularly 3D multicellular, millimeter-scale constructs, such as spheroids, assembloids, and organoids. Herein, examples of 3D mechanical interfaces are presented, in which thin ribbons of parylene-C form the basis of transparent, highly compliant frameworks that can be reversibly opened and closed to capture, envelop, and mechanically restrain fragile 3D tissues in a gentle, nondestructive manner, for precise measurements of viscoelastic properties using techniques in nanoindentation. Finite element analysis serves as a design tool to guide selection of geometries and material parameters for shape-matching 3D architectures tailored to organoids of interest. These computational approaches also quantitate all aspects of deformations during the processes of opening and closing the structures and of forces imparted by them onto the surfaces of enclosed soft tissues. Studies of cerebral organoids by nanoindentation show effective Young's moduli in the range from 1.5 to 2.5 kPa depending on the age of the organoid. This collection of results suggests broad utility of compliant 3D mesostructures in noninvasive mechanical measurements of millimeter-scale, soft biological tissues.


Subject(s)
Organoids , Elastic Modulus , Finite Element Analysis
17.
Front Endocrinol (Lausanne) ; 12: 789526, 2021.
Article in English | MEDLINE | ID: mdl-35069442

ABSTRACT

Clinical islet allotransplantation has been successfully regulated as tissue/organ for transplantation in number of countries and is recognized as a safe and efficacious therapy for selected patients with type 1 diabetes mellitus. However, in the United States, the FDA considers pancreatic islets as a biologic drug, and islet transplantation has not yet shifted from the experimental to the clinical arena for last 20 years. In order to transplant islets, the FDA requires a valid Biological License Application (BLA) in place. The BLA process is costly and lengthy. However, despite the application of drug manufacturing technology and regulations, the final islet product sterility and potency cannot be confirmed, even when islets meet all the predetermined release criteria. Therefore, further regulation of islets as drugs is obsolete and will continue to hinder clinical application of islet transplantation in the US. The Organ Procurement and Transplantation Network together with the United Network for Organ Sharing have developed separately from the FDA and BLA regulatory framework for human organs under the Human Resources & Services Administration to assure safety and efficacy of transplantation. Based on similar biologic characteristics of islets and human organs, we propose inclusion of islets into the existing regulatory framework for organs for transplantation, along with continued FDA oversight for islet processing, as it is for other cell/tissue products exempt from BLA. This approach would reassure islet quality, efficacy and access for Americans with diabetes to this effective procedure.


Subject(s)
Islets of Langerhans Transplantation/legislation & jurisprudence , Organ Transplantation/legislation & jurisprudence , Tissue and Organ Procurement/legislation & jurisprudence , Humans , Islets of Langerhans Transplantation/standards , Organ Transplantation/standards , Tissue and Organ Procurement/standards , United States , United States Food and Drug Administration
18.
Article in English | MEDLINE | ID: mdl-36330312

ABSTRACT

Monogenic diabetes is a category of diabetes mellitus caused by a single gene mutation or chromosomal abnormality, usually sub-classified as either neonatal diabetes or maturity-onset diabetes of the young (MODY). Although monogenic diabetes affects up to 3.5% of all patients with diabetes diagnosed before age 30, misdiagnosis and/or improper treatment occurs frequently. The University of Chicago Monogenic Diabetes Registry, established in 2008, offers insight into the diagnosis, treatment, and natural history of individuals known or suspected to have monogenic diabetes. Those interested in participating in the Registry begin by completing a secure web-based registration form found on our website (http://monogenicdiabetes.uchicago.edu/registry/). Participants are then screened for eligibility and consented either by phone, video call, or in person. Relevant medical and family history is collected at baseline and then annually via surveys through our secure Research Electronic Data Capture (REDCap) database. The University of Chicago Monogenic Diabetes Registry has enrolled over 3800 participants from over 2000 families. Participants represent all 50 states and more than 20 different countries. To date, over 1100 participants have a known genetic cause of diabetes. While many Registry participants reported being referred through their diabetes care provider (54%), a large portion also learned about the Registry through web searching (24%), friends/family (18%), or other sources (13%). Around two-thirds of those with a known genetic cause had research-based genetic testing completed rather than clinical testing due to insurance coverage difficulties. Of those who were found to have monogenic diabetes, significant delays in diagnosis were identified, which highlights the need for increased access to clinical genetic testing covered by insurance companies specifically within the United States. Among genes that cause a MODY phenotype, GCK mutations were the most common (59%) followed by HNF1A mutations (28%), while mutations in KCNJ11 were the most common among genes that cause neonatal diabetes (35%) followed by INS (16%). Over the last decade, improvements in data collection for the University of Chicago Monogenic Diabetes Registry have resulted in increased knowledge of the natural history of monogenic diabetes, as well as a better understanding of the most effective treatments. The University of Chicago Monogenic Diabetes Registry serves as a valuable resource that will continue to provide evidence to support improved clinical care and patient outcomes in monogenic diabetes.

19.
J Clin Endocrinol Metab ; 106(1): 237-250, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33034350

ABSTRACT

Maturity-onset diabetes of the young, or MODY-monogenic diabetes, is a not-so-rare collection of inherited disorders of non-autoimmune diabetes mellitus that remains insufficiently diagnosed despite increasing awareness. These cases are important to efficiently and accurately diagnose, given the clinical implications of syndromic features, cost-effective treatment regimen, and the potential impact on multiple family members. Proper recognition of the clinical manifestations, family history, and cost-effective lab and genetic testing provide the diagnosis. All patients must undergo a thorough history, physical examination, multigenerational family history, lab evaluation (glycated hemoglobin A1c [HbA1c], glutamic acid decarboxylase antibodies [GADA], islet antigen 2 antibodies [IA-2A], and zinc transporter 8 [ZnT8] antibodies). The presence of clinical features with 3 (or more) negative antibodies may be indicative of MODY-monogenic diabetes, and is followed by genetic testing. Molecular genetic testing should be performed before attempting specific treatments in most cases. Additional testing that is helpful in determining the risk of MODY-monogenic diabetes is the MODY clinical risk calculator (>25% post-test probability in patients not treated with insulin within 6 months of diagnosis should trigger genetic testing) and 2-hour postprandial (after largest meal of day) urinary C-peptide to creatinine ratio (with a ≥0.2 nmol/mmol to distinguish HNF1A- or 4A-MODY from type 1 diabetes). Treatment, as well as monitoring for microvascular and macrovascular complications, is determined by the specific variant that is identified. In addition to the diagnostic approach, this article will highlight recent therapeutic advancements when patients no longer respond to first-line therapy (historically sulfonylurea treatment in many variants). LEARNING OBJECTIVES: Upon completion of this educational activity, participants should be able to. TARGET AUDIENCE: This continuing medical education activity should be of substantial interest to endocrinologists and all health care professionals who care for people with diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Genetic Testing , Humans , Hypoglycemic Agents/classification , Hypoglycemic Agents/therapeutic use , Male , Patient-Centered Care , Young Adult
20.
Am J Transplant ; 21(4): 1365-1375, 2021 04.
Article in English | MEDLINE | ID: mdl-33251712

ABSTRACT

Islet allotransplantation in the United States (US) is facing an imminent demise. Despite nearly three decades of progress in the field, an archaic regulatory framework has stymied US clinical practice. Current regulations do not reflect the state-of-the-art in clinical or technical practices. In the US, islets are considered biologic drugs and "more than minimally manipulated" human cell and tissue products (HCT/Ps). In contrast, across the world, human islets are appropriately defined as "minimally manipulated tissue" and not regulated as a drug, which has led to islet allotransplantation (allo-ITx) becoming a standard-of-care procedure for selected patients with type 1 diabetes mellitus. This regulatory distinction impedes patient access to islets for transplantation in the US. As a result only 11 patients underwent allo-ITx in the US between 2016 and 2019, and all as investigational procedures in the settings of a clinical trials. Herein, we describe the current regulations pertaining to islet transplantation in the United States. We explore the progress which has been made in the field and demonstrate why the regulatory framework must be updated to both better reflect our current clinical practice and to deal with upcoming challenges. We propose specific updates to current regulations which are required for the renaissance of ethical, safe, effective, and affordable allo-ITx in the United States.


Subject(s)
Biological Products , Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Costs and Cost Analysis , Diabetes Mellitus, Type 1/surgery , Humans , Transplantation, Heterologous , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...