Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(17): 17165-72, 2004 Apr 23.
Article in English | MEDLINE | ID: mdl-14960593

ABSTRACT

The vanilloid receptor 1 (VR1 or TRPV1) ion channel is activated by noxious heat, low pH and by a variety of vanilloid-related compounds. The antagonist, capsazepine is more effective at inhibiting the human TRPV1 response to pH 5.5 than the rat TRPV1 response to this stimulus. Mutation of rat TRPV1 at three positions in the S3 to S4 region, to the corresponding human amino acid residues I514M, V518L, and M547L decreased the IC(50) values for capsazepine inhibition of the pH 5.5 response from >10,000 nm to 924 +/- 241 nm in [Ca(2+)](i) assays and increased capsazepine inhibition of the capsaicin response to levels seen for human TRPV1. We have previously noted that phorbol 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) is a strong agonist of rat TRPV1 but not human TRPV1 in [Ca(2+)](i) assays (1). Mutation of methionine 547 in S4 of rat TRPV1 to leucine, found in human TRPV1 (M547L), reduced the ability of PPAHV to activate TRPV1 by approximately 20-fold. The reciprocal mutation of human TRPV1 (L547M) enabled the human receptor to respond to PPAHV. These mutations did not significantly affect the agonist activity of capsaicin, resiniferatoxin (RTX) or olvanil in [Ca(2+)](i) assays. Introducing the equivalent mutation into guinea pig TRPV1 (L549M) increased the agonist potency of PPAHV by > 10-fold in the [Ca(2+)](i) assay and increased the amplitude of the evoked current. The rat M547L mutation reduced the affinity of RTX binding. Thus, amino acids within the S2-S4 region are important sites of agonist and antagonist interaction with TRPV1.


Subject(s)
Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Phorbol Esters/chemistry , Receptors, Drug/antagonists & inhibitors , Amino Acid Sequence , Animals , CHO Cells , Calcium/metabolism , Cricetinae , DNA, Complementary/metabolism , Diterpenes/pharmacology , Dose-Response Relationship, Drug , Electrophysiology , Guinea Pigs , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Ions , Kinetics , Ligands , Methionine/chemistry , Models, Chemical , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Phenotype , Protein Structure, Tertiary , Rats , Receptors, Drug/metabolism , Species Specificity , Time Factors
2.
Neuropharmacology ; 43(3): 450-6, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12243775

ABSTRACT

We have cloned a guinea pig Vanilloid receptor 1 (VR1) from a dorsal root ganglion cDNA library and expressed it in CHO cells. The receptor has been functionally characterized by measuring changes in intracellular calcium produced by capsaicin, low pH and noxious heat. Capsaicin produced a concentration-dependent increase in intracellular calcium in guinea pig VR1-CHO cells with an estimated EC(50) of 0.17 +/- 0.0065 micro M, similar to that previously reported for rat and human VR1. Olvanil and resiniferatoxin were also effective agonists (EC(50) values of 0.0087 +/- 0.0035 micro M and 0.067 +/- 0.014 micro M, respectively), but 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) and anandamide showed little agonist activity up to 10 micro M. As with human and rat VR1, guinea pig VR1 was also activated by pH below 6.0 and by noxious heat (>42 degrees C). Capsazepine acted as an antagonist of capsaicin responses in guinea pig VR1-CHO cells (IC(50) of 0.324 +/- 0.041 micro M ), as seen at rat VR1. However, in contrast to its lack of activity against pH and heat responses at rat VR1, capsazepine was an effective antagonist of these responses at guinea pig VR1. Capsazepine displayed an IC(50) of 0.355 +/- 25 micro M against pH 5.5, and provided complete blockade of heat responses at 1 micro M. Thus, capsazepine can significantly inhibit calcium influx due to heat and pH 5.5 at guinea pig VR1 and human VR1 but is inactive against these activators at rat VR1.


Subject(s)
Capsaicin/analogs & derivatives , Receptors, Drug/genetics , Aequorin/metabolism , Amino Acid Sequence , Animals , CHO Cells , Calcium/metabolism , Capsaicin/pharmacology , Chronic Disease , Cloning, Molecular , Cricetinae , Fluorescent Dyes , Fura-2 , Guinea Pigs , Heart , Hydrogen-Ion Concentration , Luminescent Measurements , Molecular Sequence Data , Pain/drug therapy , Rats , Receptors, Drug/agonists , Receptors, Drug/antagonists & inhibitors , TRPV Cation Channels
3.
J Med Chem ; 45(11): 2160-72, 2002 May 23.
Article in English | MEDLINE | ID: mdl-12014954

ABSTRACT

The 1-(2-nitrophenyl)thiosemicarbazide (TSC) derivative, (S)-1-[4-(4-benzhydrylthiosemicarbazido)-3-nitrobenzenesulfonyl]pyrrolidine-2-carboxylic acid [2-[(2-dimethylaminoethyl)methylamino]ethyl]amide (bradyzide; (S)-4), was recently disclosed as a novel, potent, orally active nonpeptide bradykinin (BK) B2 receptor antagonist. The compound inhibited the specific binding of [3H]BK to NG108-15 cell membrane preparations (rodent neuroblastoma-glioma) expressing B2 receptors with a K(i) of 0.5 +/- 0.2 nM. Compound (S)-4 also demonstrated oral efficacy against Freund's complete adjuvant (FCA)-induced mechanical hyperalgesia in rats with an ED50 value of 0.84 micromol/kg. After we optimized the terminal binding determinants projecting from the TSC framework, we found that it was possible to replace the potentially toxicophoric nitro and divalent sulfur moieties with only a 15-fold loss in binding affinity ((S)-14a). However, bradyzide and its congeners were found to have much lower affinities for cloned human B2 receptors, expressed in Cos-7 cells. The hitherto synthesized TSC series was screened against the human B2 receptor, and the dibenzosuberane (DBS) pharmacophore emerged as the key structural requirement for potency. Incorporation of this group resulted in a series of derivatives ((S)-14d,e and 19b-d) with K(i) ranges of 10.7-176 nM in NG108-15 cells (expressing the rodent B2 receptor) and 0.79-253 nM in Cos-7 cells (expressing the human B2 receptor). There was no evidence of agonist activity with any of the nonpeptides in any of the cell lines tested. In vivo, oral administration of compound 19c reversed FCA-induced and turpentine-induced mechanical hyperalgesia in rodents with ED50 values of 0.027 and 0.32 micromol/kg, respectively. The selectivity profiles of compounds (S)-14f and (S)-14g were also assessed to determine the conformational and/or steric preferences of the double-ring arrangement. The affinity of (S)-14 g for the human B2 receptor suggested that it may be a hydrophobic interaction with the ethane bridge of the DBS moiety that accounts for the increased potency of compounds (S)-14d,e and 19b,c at this receptor, by favoring a binding mode inaccessible to the unsubstituted diphenylmethyl derivative, (S)-4.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Bradykinin Receptor Antagonists , Pyrrolidines/chemical synthesis , Thiosemicarbazones/chemical synthesis , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthritis, Experimental/drug therapy , Cell Line , Female , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Models, Molecular , Physical Stimulation , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptor, Bradykinin B2 , Species Specificity , Structure-Activity Relationship , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Turpentine
SELECTION OF CITATIONS
SEARCH DETAIL
...