Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 11: 1261048, 2023.
Article in English | MEDLINE | ID: mdl-37791076

ABSTRACT

The family of ∼60 clustered protocadherins (Pcdhs) are cell adhesion molecules encoded by a genomic locus that regulates expression of distinct combinations of isoforms in individual neurons resulting in what is thought to be a neural surface "barcode" which mediates same-cell interactions of dendrites, as well as interactions with other cells in the environment. Pcdh mediated same-cell dendrite interactions were shown to result in avoidance while interactions between different cells through Pcdhs, such as between neurons and astrocytes, appear to be stable. The cell biological mechanism of the consequences of Pcdh based adhesion is not well understood although various signaling pathways have been recently uncovered. A still unidentified cytoplasmic regulatory mechanism might contribute to a "switch" between avoidance and adhesion. We have proposed that endocytosis and intracellular trafficking could be part of such a switch. Here we use "stub" constructs consisting of the proximal cytoplasmic domain (lacking the constant carboxy-terminal domain spliced to all Pcdh-γs) of one Pcdh, Pcdh-γA3, to study trafficking. We found that the stub construct traffics primarily to Rab7 positive endosomes very similarly to the full length molecule and deletion of a substantial portion of the carboxy-terminus of the stub eliminates this trafficking. The intact stub was found to be ubiquitinated while the deletion was not and this ubiquitination was found to be at non-lysine sites. Further deletion mapping of the residues required for ubiquitination identified potential serine phosphorylation sites, conserved among Pcdh-γAs, that can reduce ubiquitination when pseudophosphorylated and increase surface expression. These results suggest Pcdh-γA ubiquitination can influence surface expression which may modulate adhesive activity during neural development.

2.
Brain Struct Funct ; 228(8): 1993-2006, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37668732

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) receive synaptic innervation from glutamatergic and GABAergic axons and can be dynamically regulated by neural activity, resulting in activity-dependent changes in patterns of axon myelination. However, it remains unclear to what extent other types of neurons may innervate OPCs. Here, we provide evidence implicating midbrain dopamine neurons in the innervation of oligodendrocyte lineage cells in the anterior corpus callosum and nearby white matter tracts of male and female adult mice. Dopaminergic axon terminals were identified in the corpus callosum of DAT-Cre mice after injection of an eYFP reporter virus into the midbrain. Furthermore, fast-scan cyclic voltammetry revealed monoaminergic transients in the anterior corpus callosum, consistent with the anatomical findings. Using RNAscope, we further demonstrate that ~ 40% of Olig2 + /Pdfgra + cells and ~ 20% of Olig2 + /Pdgfra- cells in the anterior corpus callosum express Drd1 and Drd2 transcripts. These results suggest that oligodendrocyte lineage cells may respond to dopamine released from midbrain dopamine axons, which could affect myelination. Together, this work broadens our understanding of neuron-glia interactions with important implications for myelin plasticity by identifying midbrain dopamine axons as a potential regulator of corpus callosal oligodendrocyte lineage cells.


Subject(s)
Corpus Callosum , Dopaminergic Neurons , Female , Male , Animals , Mice , Cell Lineage , Dopamine , Neuroglia , Mesencephalon
3.
J Surg Res ; 267: 336-341, 2021 11.
Article in English | MEDLINE | ID: mdl-34186310

ABSTRACT

BACKGROUND: Microbiome research has expanded to consider contributions of microbial kingdoms beyond bacteria, including fungi (i.e., the mycobiome). However, optimal specimen handling protocols are varied, including uncertainty of how enzymes utilized to facilitate fungal DNA recovery may interfere with bacterial microbiome sequencing from the same samples. METHODS: With Institutional Animal Care and Use Committee approval, fecal samples were obtained from 20 rhesus macaques (10 males, 10 females; Macaca mulatta). DNA was extracted using commercially available kits, with or without lyticase enzyme treatment. 16S ribosomal RNA (bacterial) and Internal Transcribed Spacer (ITS; fungal) sequencing was performed on the Illumina MiSeq platform. Bioinformatics analysis was performed using Qiime and Calypso. RESULTS: Inclusion of lyticase in the sample preparation pipeline significantly increased usable fungal ITS reads, community alpha diversity, and enhanced detection of numerous fungal genera that were otherwise poorly or not detected in primate fecal samples. Bacterial 16S ribosomal RNA amplicons obtained from library preparation were statistically unchanged by the presence of lyticase. CONCLUSIONS: We demonstrate inclusion of the enzyme lyticase for fungal cell wall digestion markedly enhances mycobiota detection while maintaining fidelity of microbiome identification and community features in non-human primates. In restricted sample volumes, as are common in limited human samples, use of single sample DNA isolation will facilitate increased rigor and controlled approaches in future work.


Subject(s)
Microbiota , Mycobiome , Animals , Female , Glucan Endo-1,3-beta-D-Glucosidase , Macaca mulatta/genetics , Male , Multienzyme Complexes , Mycobiome/genetics , Peptide Hydrolases , RNA, Ribosomal, 16S/genetics
4.
J Comp Neurol ; 529(10): 2407-2417, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33381867

ABSTRACT

Clustered protocadherins (Pcdhs) are a family of ~60 cadherin-like proteins (divided into subclasses α, ß, and γ) that regulate dendrite morphology and neural connectivity. Their expression is controlled through epigenetic regulation at a gene cluster encoding the molecules. During neural development, Pcdhs mediate dendrite self-avoidance in some neuronal types through an uncharacterized anti-adhesive mechanism. Pcdhs are also important for dendritic complexity in cortical neurons likely through a pro-adhesive mechanism. Pcdhs have also been postulated to participate in synaptogenesis and connectivity. Some synaptic defects were noted in knockout animals, including synaptic number and physiology, but the role of these molecules in synaptic development is not understood. The effect of Pcdh knockout on dendritic patterning may present a confound to studying synaptogenesis. We showed previously that Pcdh-γs are highly enriched in intracellular compartments in dendrites and spines with localization at only a few synaptic clefts. To gain insight into how Pcdh-γs might affect synapses, we compared synapses that harbored Pcdh-γs versus those that did not for parameters of synaptic maturation including pre- and postsynaptic size, postsynaptic perforations, and spine morphology by light microscopy in cultured hippocampal neurons and by serial section immuno-electron microscopy in hippocampal CA1. In mature neurons, synapses immunopositive for Pcdh-γs were larger in diameter with more frequent perforations. Analysis of spines in cultured neurons revealed that mushroom spines were more frequently immunopositive for Pcdh-γs at their tips than thin spines. These results suggest that Pcdh-γ function at the synapse may be related to promotion of synaptic maturation and stabilization.


Subject(s)
Cadherin Related Proteins/metabolism , Neurogenesis/physiology , Neurons/metabolism , Neurons/ultrastructure , Synapses/metabolism , Synapses/ultrastructure , Animals , Gene Knockout Techniques , Hippocampus/metabolism , Hippocampus/ultrastructure , Microscopy, Immunoelectron , Rats , Rats, Sprague-Dawley
5.
Front Cell Neurosci ; 12: 338, 2018.
Article in English | MEDLINE | ID: mdl-30356756

ABSTRACT

Tau is a neuronal microtubule associated protein whose main biological functions are to promote microtubule self-assembly by tubulin and to stabilize those already formed. Tau also plays an important role as an axonal microtubule protein. Tau is an amazing protein that plays a key role in cognitive processes, however, deposits of abnormal forms of tau are associated with several neurodegenerative diseases, including Alzheimer disease (AD), the most prevalent, and Chronic Traumatic Encephalopathy (CTE) and Traumatic Brain Injury (TBI), the most recently associated to abnormal tau. Tau post-translational modifications (PTMs) are responsible for its gain of toxic function. Alonso et al. (1996) were the first to show that the pathological tau isolated from AD brains has prion-like properties and can transfer its toxic function to the normal molecule. Furthermore, we reported that the pathological changes are associated with tau phosphorylation at Ser199 and 262 and Thr212 and 231. This pathological version of tau induces subcellular mislocalization in cultured cells and neurons, and translocates into the nucleus or accumulated in the perinuclear region of cells. We have generated a transgenic mouse model that expresses pathological human tau (PH-Tau) in neurons at two different concentrations (4% and 14% of the total endogenous tau). In this model, PH-Tau causes cognitive decline by at least two different mechanisms: one that involves the cytoskeleton with axonal disruption (at high concentration), and another in which the apparent neuronal morphology is not grossly affected, but the synaptic terminals are altered (at lower concentration). We will discuss the putative involvement of tau in proteostasis under these conditions. Understanding tau's biological activity on and off the microtubules will help shed light to the mechanism of neurodegeneration and of normal neuronal function.

6.
J Biomed Sci ; 25(1): 45, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29793500

ABSTRACT

BACKGROUND: Lead (Pb2+) is an environmental neurotoxicant that disrupts neurodevelopment, communication, and organization through competition with Ca2+ signaling. How perinatal Pb2+ exposure affects Ca2+-related gene regulation remains unclear. However, Ca2+ activates the L-Type voltage sensitive calcium channel ß-3 subunit (Ca-ß3), which autoregulates neuronal excitability and plays a role in the GABA-shift from excitatory-to-inhibitory neurotransmission. METHOD: A total of eight females (n = 4 Control and n = 4 Perinatal) and four males (n = 2 Control and n = 2 Perinatal) rats were used as breeders to serve as Dams and Sires. The Dam's litters each ranged from N = 6-10 pups per litter (M = 8, SD = 2), irrespective of Pb2+ treatment, with a majority of males over females. Since there were more males in each of the litters than females, to best assess and equally control for Pb2+- and litter-effects across all developmental time-points under study, female pups were excluded due to an insufficient sample size availability from the litter's obtained. From the included pup litters, 24 experimentally naïve male Long Evans hooded rat pups (Control N = 12; Pb2+ N = 12) were used in the present study.  Brains were extracted from rat prefrontal cortex (PFC) and hippocampus (HP) at postnatal day (PND) 2, 7, 14 and 22, were homogenized in 1 mL of TRIzol reagent per 100 mg of tissue using a glass-Teflon homogenizer. Post-centrifugation, RNA was extracted with chloroform and precipitated with isopropyl alcohol. RNA samples were then re-suspended in 100 µL of DEPC treated H2O. Next, 10 µg of total RNA was treated with RNase-free DNase (Qiagen) at 37 °C for 1 h and re-purified by a 3:1 phenol/chloroform extraction followed by an ethanol precipitation. From the purified RNA, 1 µg was used in the SYBR GreenER Two-Step qRT-PCR kit (Invitrogen) for first strand cDNA synthesis and the quantitative real-time PCR (qRT-PCR). The effects of perinatal Pb2+ exposure on genes related to early neuronal development and the GABA-shift were evaluated through the expression of: Ca-ß3, GABAAR-ß3, NKCC1, KCC2, and GAD 80, 86, 65, and 67 isoforms. RESULTS: Perinatal Pb2+ exposure significantly altered the GABA-shift neurodevelopmental GOI expression as a function of Pb2+ exposure and age across postnatal development. Dramatic changes were observed with Ca-ß3 expression consistent with a Pb2+ competition with L-type calcium channels. By PND 22, Ca-ß3 mRNA was reduced by 1-fold and 1.5-fold in PFC and HP respectively, relative to controls. All HP GABA-ß3 mRNA levels were particularly vulnerable to Pb2+ at PND 2 and 7, and both PFC and HP were negatively impacted by Pb2+ at PND 22. Additionally, Pb2+ altered both the PFC and HP immature GAD 80/86 mRNA expression particularly at PND 2, whereas mature GAD 65/67 were most significantly affected by Pb2+ at PND 22. CONCLUSIONS: Perinatal Pb2+ exposure disrupts the expression of mRNAs related to the GABA-shift, potentially altering the establishment, organization, and excitability of neural circuits across development. These findings offer new insights into the altered effects Pb2+ has on the GABAergic system preceding what is known regarding Pb2+ insults unto the glutamatergic system.


Subject(s)
Environmental Pollutants/adverse effects , Gene Expression Regulation, Developmental/drug effects , Hippocampus/metabolism , Lead/adverse effects , Prefrontal Cortex/metabolism , Prenatal Exposure Delayed Effects/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Female , Male , Pregnancy , Rats , Rats, Long-Evans
7.
J Morphol ; 279(5): 609-615, 2018 05.
Article in English | MEDLINE | ID: mdl-29383750

ABSTRACT

Nuclear egress, also referred to as nuclear envelope (NE) budding, is a process of transport in which vesicles containing molecular complexes or viral particles leave the nucleus through budding from the inner nuclear membrane (INM) to enter the perinuclear space. Following this event, the perinuclear vesicles (PNVs) fuse with the outer nuclear membrane (ONM), where they release their contents into the cytoplasm. Nuclear egress is thought to participate in many functions such as viral replication, cellular differentiation, and synaptic development. The molecular basis for nuclear egress is now beginning to be elucidated. Here, we observe in the sea urchin gastrula, using serial section transmission electron microscopy, strikingly abundant PNVs containing as yet unidentified granules that resemble the ribonucleoprotein complexes (RNPs) previously observed in similar types of PNVs. Some PNVs were observed in the process of fusion with the ONM where they appeared to release their contents into the cytoplasm. These vesicles were abundantly observed in all three presumptive germ layers. These findings indicate that nuclear egress is likely to be an important mechanism for nucleocytoplasmic transfer during sea urchin development. The sea urchin may be a useful model to characterize further and gain a better understanding of the process of nuclear egress.


Subject(s)
Active Transport, Cell Nucleus/physiology , Sea Urchins/physiology , Sea Urchins/ultrastructure , Transport Vesicles/ultrastructure , Animals , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Gastrula , Microscopy, Electron, Transmission , Nuclear Envelope/metabolism , Nuclear Envelope/ultrastructure , Transport Vesicles/metabolism
8.
Cancer Res ; 78(1): 103-114, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29038347

ABSTRACT

The Akt pathway is a well-known promoter of tumor malignancy. Akt3 is expressed as two alternatively spliced variants, one of which lacks the key regulatory serine 472 phosphorylation site. Whereas the function of full-length Akt3 isoform (Akt3/+S472) is well-characterized, that of Akt3/-S472 isoform remains unknown. Despite being expressed at a substantially lower level than Akt3/+S472 in triple-negative breast cancer cells, specific ablation of Akt3/-S472 enhanced, whereas overexpression, suppressed mammary tumor growth, consistent with a significant association with patient survival duration relative to Akt3/+S472. These effects were due to striking induction of apoptosis, which was mediated by Bim upregulation, leading to conformational activation of Bax and caspase-3 processing. Bim accumulation was caused by marked endocytosis of EGF receptors with concomitant ERK attenuation, which stabilizes BIM. These findings demonstrate an unexpected function of an endogenously expressed Akt isoform in promoting, as opposed to suppressing, apoptosis, underscoring that Akt isoforms may exert dissonant functions in malignancy.Significance: These results illuminate an unexpected function for an endogenously expressed Akt isoform in promoting apoptosis, underscoring the likelihood that different Akt isoforms exert distinct functions in human cancer. Cancer Res; 78(1); 103-14. ©2017 AACR.


Subject(s)
Apoptosis/physiology , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Animals , Apoptosis/genetics , Bcl-2-Like Protein 11/genetics , Bcl-2-Like Protein 11/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Female , Humans , Mice, Nude , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA Splice Sites , Serine/genetics , Serine/metabolism , Triple Negative Breast Neoplasms/mortality , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
9.
Adv Exp Med Biol ; 975 Pt 1: 503-511, 2017.
Article in English | MEDLINE | ID: mdl-28849478

ABSTRACT

In this study we examined glucose homeostasis and retinal histology in homozygous knockout mice lacking CSAD (CSAD-KO). Two-month-old male mice were used including wild type (WT), homozygotes with without supplementation of taurine in the drinking water (1% w/v). Mice were sacrificed and the eyes processed for histology and immunohistochemistry. Additional mice were subjected to a glucose tolerance test (7.5 mg/kg BW) after 12 h fasting. We found that CSAD-KO and CSAD-KO treated with taurine were slightly hypoglycemic prior to glucose injection and showed a significantly reduced plasma glucose at 30, 60 and 120 min post-glucose injection, compared to WT. While glucose homeostasis in CSAD-KO was significantly different compared to WT, CSAD-KO supplemented with taurine was without effect. Analysis of retinas by electron microscopy showed that CSAD-KO without taurine supplementation exhibited substantial retinal degeneration. Remaining photoreceptor outer and inner segments were disorganized. Retinal nuclear and synaptic layers were largely absent and there was apparent reorganization of the pigmented epithelial cells. The choroid and sclera were intact. These histological aberrations were largely rectified by taurine supplementation in the drinking water.These data indicate that taurine deficiency alters glucose homeostasis and retinal structure and taurine supplementation improves these retinal abnormalities, but not in hypoglycemia.


Subject(s)
Blood Glucose/drug effects , Homeostasis/drug effects , Islets of Langerhans/pathology , Retina/pathology , Taurine/metabolism , Animals , Carboxy-Lyases/deficiency , Islets of Langerhans/drug effects , Mice , Mice, Knockout , Retina/drug effects , Taurine/pharmacology
10.
Biochem Biophys Res Commun ; 491(3): 693-700, 2017 09 23.
Article in English | MEDLINE | ID: mdl-28756231

ABSTRACT

In yeast, PAH1 plays an important role in cell homeostasis and lipid biosynthesis. PAH1 encodes for the PA phosphatase, Pah1p, which is responsible for de novo TAG and phospholipid synthesis. It has been suggested that the lack of Pah1p causes irregular vacuolar morphology and dysfunctional V-ATPase pump activity. However, the molecular connection between Pah1p and V-ATPase activity has remained unclear. Through real-time PCR, we have shown that PAH1 is maximally induced at the stationary stage in the presence of inositol. We also found that vacuoles were less fragmented when PAH1 is maximally expressed. Subsequently, we observed that vacuoles from pah1Δ cells were more acidic than those in WT cells. Furthermore, V-ATPase genes were upregulated in the absence of Pah1p. These results suggest that Pah1p plays an important role in vacuolar activity by negatively regulating the expression of V-ATPase genes. As such, we provide evidence to show the role of Pah1p in vacuolar acidification and fragmentation.


Subject(s)
Inositol/metabolism , Phosphatidate Phosphatase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/chemistry , Vacuoles/metabolism , Down-Regulation/physiology , Gene Expression Regulation, Enzymologic/physiology , Hydrogen-Ion Concentration
11.
Semin Cell Dev Biol ; 69: 131-139, 2017 09.
Article in English | MEDLINE | ID: mdl-28478299

ABSTRACT

The cluster of almost 60 protocadherin genes, divided into the α, ß and γ subgroups, is a hallmark of vertebrate nervous system evolution. These clustered protocadherins (Pcdhs) are of interest for several reasons, one being the arrangement of the genes, which allows epigenetic regulation at the cluster and single-cell identity. Another reason is the still ambiguous effect of Pcdhs on cell-cell interaction. Unlike the case for classical cadherins, which typically mediate strong cell adhesion and formation of adherens junctions, it has been challenging to ascertain exactly how Pcdhs affect interacting cells. In some instances, Pcdhs appear to promote the association of membranes, while in other cases the Pcdhs are anti-adhesive and cause avoidance of interacting membranes. It is clear that Pcdh extracellular domains bind homophillically in an antiparallel conformation, typical of adhesive interactions. How can molecules that would seemingly bind cells together be able to promote the avoidance of membranes? It is possible that Pcdh trafficking will eventually provide insights into the role of these molecules at the cell surface. We have found that endogenous and expressed Pcdhs are generally less efficient at targeting to cell junctions and synapses than are classical cadherins. Instead, Pcdhs are prominently sequestered in the endolysosome system or other intracellular compartments. What role this trafficking plays in the unique mode of cell-cell interaction is a current topic of investigation. It is tempting to speculate that modulation of endocytosis and endolysosomal trafficking may be a part of the mechanism by which Pcdhs convert from adhesive to avoidance molecules.


Subject(s)
Cadherins/metabolism , Amino Acid Sequence , Animals , Cadherins/chemistry , Cadherins/genetics , Cell Membrane/metabolism , Endocytosis , Humans , Models, Biological , Protein Transport , Synapses/metabolism
12.
Case Rep Psychiatry ; 2017: 1310465, 2017.
Article in English | MEDLINE | ID: mdl-29333310

ABSTRACT

Anti-NMDA receptor antibody associated encephalitis as a cause of new-onset neuropsychiatric manifestations in children and adults can represent a significant diagnostic challenge for clinicians. Clinical signs often include encephalopathy, new-onset psychosis, and movement phenomenon. Although orofacial dyskinesias were initially identified as a characteristic movement phenomenon in this type of encephalitis, an expanded range of abnormalities has recently been reported, including isolated ataxia. We report a case of isolated hemiataxia in a young adult with mild initial psychiatric manifestations. A personal and family history of preceding neuropsychiatric symptoms produced diagnostic confusion and resulted in a significant diagnostic and therapeutic delay. Our case confirms the unilateral movement manifestations that have been emphasized in recent reports. Additionally, it confirms the need for involvement of neurologic as well as psychiatric services in the evaluation of such cases and emphasizes the importance of the neurologic examination in presentations with an initial psychiatric predominance.

13.
BMC Cell Biol ; 16: 28, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26608278

ABSTRACT

BACKGROUND: Clustered protocadherins (Pcdhs) are a large family of neural cadherin-like proteins encoded by individual exons located within three gene clusters. Each exon codes an extracellular, transmembrane, and proximal cytoplasmic domain. These "variable" regions may be spliced to a constant cytoplasmic moiety encoded at the end of a cluster. Pcdh extracellular domains mediate homophilic cell-cell binding but their cytoplasmic domains cause intracellular retention and may negatively regulate Pcdh cell-cell binding. Pcdhs can be found at the cell surface in neurons and other cells but are also, unlike classical cadherins, prominently trafficked to the endolysosome system. It was previously found that a segment within the variable portion of the Pcdh-γA3 cytoplasmic domain (VCD) was shown to be necessary for endolysosomal trafficking. RESULTS: Here it is shown that this same VCD segment can mediate cytoplasmic association among Pcdhs from the different clusters. Internal deletions within this VCD region (termed here the VCD motif) that disrupt the association altered trafficking of Pcdh-γA3 in the endolysosomal system while deletions outside VCD motif did not affect trafficking. CONCLUSIONS: The results show that Pcdhs associate cytoplasmically via a motif within the VCD and that this is critical for Pcdh trafficking. Given that truncation at the VCD motif alters endolysosomal trafficking of Pcdhs, the VCD interaction described here may provide new insights into the dynamic nature of Pcdh mediated cell-cell interactions.


Subject(s)
Cadherins/chemistry , Cadherins/metabolism , Cytoplasm/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Amino Acid Motifs , Cadherin Related Proteins , Cadherins/genetics , Humans , Molecular Sequence Data , Protein Transport
15.
PLoS Genet ; 10(10): e1004626, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25275521

ABSTRACT

Deficiency of autophagy protein beclin 1 is implicated in tumorigenesis and neurodegenerative diseases, but the molecular mechanism remains elusive. Previous studies showed that Beclin 1 coordinates the assembly of multiple VPS34 complexes whose distinct phosphatidylinositol 3-kinase III (PI3K-III) lipid kinase activities regulate autophagy at different steps. Recent evidence suggests a function of beclin 1 in regulating multiple VPS34-mediated trafficking pathways beyond autophagy; however, the precise role of beclin 1 in autophagy-independent cellular functions remains poorly understood. Herein we report that beclin 1 regulates endocytosis, in addition to autophagy, and is required for neuron viability in vivo. We find that neuronal beclin 1 associates with endosomes and regulates EEA1/early endosome localization and late endosome formation. Beclin 1 maintains proper cellular phosphatidylinositol 3-phosphate (PI(3)P) distribution and total levels, and loss of beclin 1 causes a disruption of active Rab5 GTPase-associated endosome formation and impairment of endosome maturation, likely due to a failure of Rab5 to recruit VPS34. Furthermore, we find that Beclin 1 deficiency causes complete loss of the UVRAG-VPS34 complex and associated lipid kinase activity. Interestingly, beclin 1 deficiency impairs p40phox-linked endosome formation, which is rescued by overexpressed UVRAG or beclin 1, but not by a coiled-coil domain-truncated beclin 1 (a UVRAG-binding mutant), Atg14L or RUBICON. Thus, our study reveals the essential role for beclin 1 in neuron survival involving multiple membrane trafficking pathways including endocytosis and autophagy, and suggests that the UVRAG-beclin 1 interaction underlies beclin 1's function in endocytosis.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Endosomes/metabolism , Neurons/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Autophagy/genetics , Beclin-1 , Class III Phosphatidylinositol 3-Kinases/genetics , Endocytosis/genetics , ErbB Receptors/metabolism , HeLa Cells/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/pathology , Phosphatidylinositol Phosphates/metabolism , Tumor Suppressor Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
16.
FASEB J ; 28(5): 2120-33, 2014 May.
Article in English | MEDLINE | ID: mdl-24497580

ABSTRACT

Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.


Subject(s)
Blood Pressure , Neuropeptides/genetics , Neuropeptides/metabolism , Secretory Vesicles/metabolism , Adrenal Medulla/metabolism , Angiotensin Amide/blood , Animals , Chromaffin Cells/metabolism , Chromogranin A/metabolism , Cytoplasm/metabolism , Epinephrine/blood , Gene Knock-In Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Nerve Growth Factors , Neurotransmitter Agents/metabolism , Peptide Fragments/metabolism , Phenotype
17.
Nat Commun ; 3: 1240, 2012.
Article in English | MEDLINE | ID: mdl-23212369

ABSTRACT

Protein quality control is essential for cellular survival. Failure to eliminate pathogenic proteins leads to their intracellular accumulation in the form of protein aggregates. Autophagy can recognize protein aggregates and degrade them in lysosomes. However, some aggregates escape the autophagic surveillance. Here we analyse the autophagic degradation of different types of aggregates of synphilin-1, a protein often found in pathogenic protein inclusions. We show that small synphilin-1 aggregates and large aggresomes are differentially targeted by constitutive and inducible autophagy. Furthermore, we identify a region in synphilin-1, necessary for its own basal and inducible aggrephagy and sufficient for the degradation of other pro-aggregating proteins. Although the presence of this peptide is sufficient for basal aggrephagy, inducible aggrephagy requires its ubiquitination, which diminishes protein mobility on the surface of the aggregate and favours the recruitment and assembly of the protein complexes required for autophagosome formation. Our study reveals different mechanisms for cells to cope with aggregate proteins via autophagy and supports the idea that autophagic susceptibility of prone-to-aggregate proteins may not depend on the nature of the aggregating proteins per se, but on their dynamic properties in the aggregate.


Subject(s)
Autophagy/physiology , Proteins/metabolism , Ankyrins/physiology , Carrier Proteins/metabolism , Cell Line , Cell Physiological Phenomena/physiology , Inclusion Bodies/metabolism , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins/metabolism , Peptides/metabolism , Peptides/physiology , Phagosomes/metabolism , Phagosomes/physiology , Proteins/physiology , Ubiquitination
18.
J Neurosci ; 32(19): 6651-64, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22573687

ABSTRACT

Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is regulated by the interplay between extrinsic signals and intrinsic epigenetic determinants. In this study, we analyze the effect that the extracellular ligands sonic hedgehog (Shh) and bone morphogenetic protein 4 (BMP4), have on histone acetylation and gene expression in cultured OPCs. Shh treatment favored the progression toward oligodendrocytes by decreasing histone acetylation and inducing peripheral chromatin condensation. BMP4 treatment, in contrast, inhibited the progression toward oligodendrocytes and favored astrogliogenesis by favoring global histone acetylation and retaining euchromatin. Pharmacological treatment or silencing of histone deacetylase 1 (Hdac1) or histone deacetylase 2 (Hdac2) in OPCs did not affect BMP4-dependent astrogliogenesis, while it prevented Shh-induced oligodendrocyte differentiation and favored the expression of astrocytic genes. Transcriptional profiling of treated OPCs, revealed that BMP4-inhibition of oligodendrocyte differentiation was accompanied by increased levels of Wnt (Tbx3) and Notch-target genes (Jag1, Hes1, Hes5, Hey1, and Hey2), decreased recruitment of Hdac and increased histone acetylation at these loci. Similar upregulation of Notch-target genes and increased histone acetylation were observed in the corpus callosum of mice infused with BMP4 during cuprizone-induced demyelination. We conclude that Shh and Bmp4 differentially regulate histone acetylation and chromatin structure in OPCs and that BMP4 acts as a potent inducer of gene expression, including Notch and Wnt target genes, thereby enhancing the crosstalk among signaling pathways that are known to inhibit myelination and repair.


Subject(s)
Bone Morphogenetic Protein 4/physiology , Hedgehog Proteins/physiology , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Histones/metabolism , Oligodendroglia/physiology , Transcriptome/genetics , Acetylation , Animals , Animals, Newborn , Cells, Cultured , Female , Gene Silencing , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/genetics , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 2/genetics , Histones/antagonists & inhibitors , Histones/genetics , Mice , Mice, Inbred C57BL , Oligodendroglia/metabolism , Rats
19.
PLoS One ; 6(10): e26478, 2011.
Article in English | MEDLINE | ID: mdl-22028887

ABSTRACT

Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity.


Subject(s)
Cell Culture Techniques/methods , Hippocampus/cytology , Microscopy/methods , Presynaptic Terminals/metabolism , Animals , Cell Survival , Dendritic Spines/metabolism , Female , Fluorescent Dyes/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Time Factors
20.
Mol Biol Cell ; 22(22): 4362-72, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21917590

ABSTRACT

Clustered protocadherins (Pcdhs) are arranged in gene clusters (α, ß, and γ) with variable and constant exons. Variable exons encode cadherin and transmembrane domains and ~90 cytoplasmic residues. The 14 Pcdh-αs and 22 Pcdh-γs are spliced to constant exons, which, for Pcdh-γs, encode ~120 residues of an identical cytoplasmic moiety. Pcdh-γs participate in cell-cell interactions but are prominently intracellular in vivo, and mice with disrupted Pcdh-γ genes exhibit increased neuronal cell death, suggesting nonconventional roles. Most attention in terms of Pcdh-γ intracellular interactions has focused on the constant domain. We show that the variable cytoplasmic domain (VCD) is required for trafficking and organelle tubulation in the endolysosome system. Deletion of the constant cytoplasmic domain preserved the late endosomal/lysosomal trafficking and organelle tubulation observed for the intact molecule, whereas deletion or excision of the VCD or replacement of the Pcdh-γA3 cytoplasmic domain with that from Pcdh-α1 or N-cadherin dramatically altered trafficking. Truncations or internal deletions within the VCD defined a 26-amino acid segment required for trafficking and tubulation in the endolysosomal pathway. This active VCD segment contains residues that are conserved in Pcdh-γA and Pcdh-γB subfamilies. Thus the VCDs of Pcdh-γs mediate interactions critical for Pcdh-γ trafficking.


Subject(s)
Cadherins/chemistry , Cadherins/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Animals , Cadherin Related Proteins , Cadherins/genetics , Cell Communication , Cell Line , HEK293 Cells , Humans , Mice , Multigene Family , Nervous System/metabolism , Protein Structure, Tertiary , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...