Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Med Inform Assoc ; 25(10): 1331-1338, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30085008

ABSTRACT

Objective: Healthcare organizations use research data models supported by projects and tools that interest them, which often means organizations must support the same data in multiple models. The healthcare research ecosystem would benefit if tools and projects could be adopted independently from the underlying data model. Here, we introduce the concept of a reusable application programming interface (API) for healthcare and show that the i2b2 API can be adapted to support diverse patient-centric data models. Materials and Methods: We develop methodology for extending i2b2's pre-existing API to query additional data models, using i2b2's recent "multi-fact-table querying" feature. Our method involves developing data-model-specific i2b2 ontologies and mapping these to query non-standard table structure. Results: We implement this methodology to query OMOP and PCORnet models, which we validate with the i2b2 query tool. We implement the entire PCORnet data model and a five-domain subset of the OMOP model. We also demonstrate that additional, ancillary data model columns can be modeled and queried as i2b2 "modifiers." Discussion: i2b2's REST API can be used to query multiple healthcare data models, enabling shared tooling to have a choice of backend data stores. This enables separation between data model and software tooling for some of the more popular open analytic data models in healthcare. Conclusion: This methodology immediately allows querying OMOP and PCORnet using the i2b2 API. It is released as an open-source set of Docker images, and also on the i2b2 community wiki.


Subject(s)
Big Data , Data Warehousing/methods , Electronic Health Records , Internet , Biomedical Research , Databases, Factual , Humans , Models, Theoretical , Software , Vocabulary, Controlled
2.
PLoS One ; 12(12): e0190268, 2017.
Article in English | MEDLINE | ID: mdl-29284022

ABSTRACT

Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) or loss of Arabidopsis thaliana PARG1 (poly(ADP-ribose) glycohydrolase) disrupt a subset of plant defenses. In the present study we examined the impact of altered poly(ADP-ribosyl)ation on early gene expression induced by the microbe-associate molecular patterns (MAMPs) flagellin (flg22) and EF-Tu (elf18). Stringent statistical analyses and filtering identified 178 genes having MAMP-induced mRNA abundance patterns that were altered by either PARP inhibitor 3-aminobenzamide (3AB) or PARG1 knockout. From the identified set of 178 genes, over fifty Arabidopsis T-DNA insertion lines were chosen and screened for altered basal defense responses. Subtle alterations in callose deposition and/or seedling growth in response to those MAMPs were observed in knockouts of At3g55630 (FPGS3, a cytosolic folylpolyglutamate synthetase), At5g15660 (containing an F-box domain), At1g47370 (a TIR-X (Toll-Interleukin Receptor domain)), and At5g64060 (a predicted pectin methylesterase inhibitor). Over-represented GO terms for the gene expression study included "innate immune response" for elf18/parg1, highlighting a subset of elf18-activated defense-associated genes whose expression is altered in parg1 plants. The study also allowed a tightly controlled comparison of early mRNA abundance responses to flg22 and elf18 in wild-type Arabidopsis, which revealed many differences. The PARP inhibitor 3-methoxybenzamide (3MB) was also used in the gene expression profiling, but pleiotropic impacts of this inhibitor were observed. This transcriptomics study revealed targets for further dissection of MAMP-induced plant immune responses, impacts of PARP inhibitors, and the molecular mechanisms by which poly(ADP-ribosyl)ation regulates plant responses to MAMPs.


Subject(s)
Arabidopsis/physiology , Poly ADP Ribosylation , Transcriptome , Arabidopsis/genetics , Arabidopsis/metabolism , Cluster Analysis , Gene Expression Profiling , Nucleic Acid Hybridization
3.
BMC Med Inform Decis Mak ; 15: 104, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26655696

ABSTRACT

BACKGROUND: Interoperable phenotyping algorithms, needed to identify patient cohorts meeting eligibility criteria for observational studies or clinical trials, require medical data in a consistent structured, coded format. Data heterogeneity limits such algorithms' applicability. Existing approaches are often: not widely interoperable; or, have low sensitivity due to reliance on the lowest common denominator (ICD-9 diagnoses). In the Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS) we endeavor to use the widely-available Current Procedural Terminology (CPT) procedure codes with ICD-9. Unfortunately, CPT changes drastically year-to-year - codes are retired/replaced. Longitudinal analysis requires grouping retired and current codes. BioPortal provides a navigable CPT hierarchy, which we imported into the Informatics for Integrating Biology and the Bedside (i2b2) data warehouse and analytics platform. However, this hierarchy does not include retired codes. METHODS: We compared BioPortal's 2014AA CPT hierarchy with Partners Healthcare's SCILHS datamart, comprising three-million patients' data over 15 years. 573 CPT codes were not present in 2014AA (6.5 million occurrences). No existing terminology provided hierarchical linkages for these missing codes, so we developed a method that automatically places missing codes in the most specific "grouper" category, using the numerical similarity of CPT codes. Two informaticians reviewed the results. We incorporated the final table into our i2b2 SCILHS/PCORnet ontology, deployed it at seven sites, and performed a gap analysis and an evaluation against several phenotyping algorithms. RESULTS: The reviewers found the method placed the code correctly with 97 % precision when considering only miscategorizations ("correctness precision") and 52 % precision using a gold-standard of optimal placement ("optimality precision"). High correctness precision meant that codes were placed in a reasonable hierarchal position that a reviewer can quickly validate. Lower optimality precision meant that codes were not often placed in the optimal hierarchical subfolder. The seven sites encountered few occurrences of codes outside our ontology, 93 % of which comprised just four codes. Our hierarchical approach correctly grouped retired and non-retired codes in most cases and extended the temporal reach of several important phenotyping algorithms. CONCLUSIONS: We developed a simple, easily-validated, automated method to place retired CPT codes into the BioPortal CPT hierarchy. This complements existing hierarchical terminologies, which do not include retired codes. The approach's utility is confirmed by the high correctness precision and successful grouping of retired with non-retired codes.


Subject(s)
Algorithms , Biological Ontologies , Current Procedural Terminology , Data Mining , Electronic Health Records , Humans , Natural Language Processing
4.
J Am Med Inform Assoc ; 22(2): 370-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25352566

ABSTRACT

OBJECTIVE: Clinical data warehouses have accelerated clinical research, but even with available open source tools, there is a high barrier to entry due to the complexity of normalizing and importing data. The Office of the National Coordinator for Health Information Technology's Meaningful Use Incentive Program now requires that electronic health record systems produce standardized consolidated clinical document architecture (C-CDA) documents. Here, we leverage this data source to create a low volume standards based import pipeline for the Informatics for Integrating Biology and the Bedside (i2b2) clinical research platform. We validate this approach by creating a small repository at Partners Healthcare automatically from C-CDA documents. MATERIALS AND METHODS: We designed an i2b2 extension to import C-CDAs into i2b2. It is extensible to other sites with variances in C-CDA format without requiring custom code. We also designed new ontology structures for querying the imported data. RESULTS: We implemented our methodology at Partners Healthcare, where we developed an adapter to retrieve C-CDAs from Enterprise Services. Our current implementation supports demographics, encounters, problems, and medications. We imported approximately 17 000 clinical observations on 145 patients into i2b2 in about 24 min. We were able to perform i2b2 cohort finding queries and view patient information through SMART apps on the imported data. DISCUSSION: This low volume import approach can serve small practices with local access to C-CDAs and will allow patient registries to import patient supplied C-CDAs. These components will soon be available open source on the i2b2 wiki. CONCLUSIONS: Our approach will lower barriers to entry in implementing i2b2 where informatics expertise or data access are limited.


Subject(s)
Biomedical Research , Continuity of Patient Care , Databases as Topic , Information Storage and Retrieval , Database Management Systems , Databases as Topic/organization & administration , Humans , Information Storage and Retrieval/methods , Meaningful Use , Systems Integration
6.
AMIA Annu Symp Proc ; : 548-52, 2007 Oct 11.
Article in English | MEDLINE | ID: mdl-18693896

ABSTRACT

The Informatics for Integrating Biology and the Bedside (i2b2) is one of the sponsored initiatives of the NIH Roadmap National Centers for Biomedical Computing (http://www.bisti.nih.gov/ncbc/). One of the goals of i2b2 is to provide clinical investigators broadly with the software tools necessary to collect and manage project-related clinical research data in the genomics age as a cohesive entity, a software suite to construct and manage the modern clinical research chart. The i2b2 "hive" is a set of software modules called "cells" that have a common messaging protocol that allow them to interact using web services and XML messages. Each cell can be developed by independent investigators to achieve specific analytic goals, and then be integrated into the hive to enhance the functionality available in the i2b2 Hive. We have applied this architecture through several ongoing clinical studies and found it to be of high value. The current version of this software has been released into the public domain and is available at the URL-http://www.i2b2.org.


Subject(s)
Biomedical Research/organization & administration , Genomics , Software , Animals , Computational Biology , Humans , Medical Records Systems, Computerized/organization & administration , Systems Integration
8.
Proc Natl Acad Sci U S A ; 101(6): 1496-501, 2004 Feb 10.
Article in English | MEDLINE | ID: mdl-14745019

ABSTRACT

It is not known how plants synthesize the p-aminobenzoate (PABA) moiety of folates. In Escherichia coli, PABA is made from chorismate in two steps. First, the PabA and PabB proteins interact to catalyze transfer of the amide nitrogen of glutamine to chorismate, forming 4-amino-4-deoxychorismate (ADC). The PabC protein then mediates elimination of pyruvate and aromatization to give PABA. Fungi, actinomycetes, and Plasmodium spp. also synthesize PABA but have proteins comprising fused domains homologous to PabA and PabB. These bipartite proteins are commonly called "PABA synthases," although it is unclear whether they produce PABA or ADC. Genomic approaches identified Arabidopsis and tomato cDNAs encoding bipartite proteins containing fused PabA and PabB domains, plus a putative chloroplast targeting peptide. These cDNAs encode functional enzymes, as demonstrated by complementation of an E. coli pabA pabB double mutant and a yeast PABA-synthase deletant. The partially purified recombinant Arabidopsis protein did not produce PABA unless the E. coli PabC enzyme was added, indicating that it forms ADC, not PABA. The enzyme behaved as a monomer in size-exclusion chromatography and was not inhibited by physiological concentrations of PABA, its glucose ester, or folates. When the putative targeting peptide was fused to GFP and expressed in protoplasts, the fusion protein appeared only in chloroplasts, indicating that PABA synthesis is plastidial. In the pericarp of tomato fruit, the PabA-PabB mRNA level fell drastically as ripening advanced, but there was no fall in total PABA content, which stayed between 0.7 and 2.3 nmol.g(-1) fresh weight.


Subject(s)
4-Aminobenzoic Acid/metabolism , Folic Acid/biosynthesis , Plant Proteins/metabolism , Plants/metabolism , Plastids/metabolism , Base Sequence , DNA Primers , Genetic Complementation Test , Molecular Sequence Data , Plants/enzymology , Reverse Transcriptase Polymerase Chain Reaction , Subcellular Fractions/enzymology
9.
Plant Physiol ; 130(3): 1132-42, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12427980

ABSTRACT

LeCTR1 was initially isolated by both differential display reverse transcriptase-polymerase chain reaction screening for tomato (Lycopersicon esculentum) fruit ethylene-inducible genes and through homology with the Arabidopsis CTR1 cDNA. LeCTR1 shares strong nucleotide sequence homology with Arabidopsis CTR1, a gene acting downstream of the ethylene receptor and showing similarity to the Raf family of serine/threonine protein kinases. The length of the LeCTR1 transcribed region from ATG to stop codon (12,000 bp) is more than twice that of Arabidopsis CTR1 (4,700 bp). Structural analysis reveals perfect conservation of both the number and position of introns and exons in LeCTR1 and Arabidopsis CTR1. The introns in LeCTR1 are much longer, however. To address whether this structural conservation is indicative of functional conservation of the corresponding proteins, we expressed LeCTR1 in the Arabidopsis ctr1-1 (constitutive triple response 1) mutant under the direction of the 35S promoter. Our data clearly show that ectopic expression of LeCTR1 in the Arabidopsis ctr1-1 mutant can restore normal ethylene signaling. The recovery of normal ethylene sensitivity upon heterologous expression of LeCTR1 was also confirmed by restored glucose sensitivity absent in the Arabidopsis ctr1-1 mutant. Expression studies confirm ethylene responsiveness of LeCTR1 in various tissues, including ripening fruit, and may suggest the evolution of alternate regulatory mechanisms in tomato versus Arabidopsis.


Subject(s)
Arabidopsis/genetics , Ethylenes/pharmacology , Plant Proteins/genetics , Solanum lycopersicum/genetics , Amino Acid Sequence , Cloning, Molecular , Fruit/drug effects , Fruit/genetics , Gene Expression Regulation, Plant/drug effects , Genetic Complementation Test , Glucose/metabolism , Solanum lycopersicum/drug effects , Molecular Sequence Data , Mutation , Phenotype , Plants, Genetically Modified , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...