Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ecol Evol ; 12(6): e9011, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35784049

ABSTRACT

Following a host shift, repeated co-passaging of a mutualistic pair is expected to increase fitness over time in one or both species. Without adaptation, a novel association may be evolutionarily short-lived as it is likely to be outcompeted by native pairings. Here, we test whether experimental evolution can rescue a low-fitness novel pairing between two sympatric species of Steinernema nematodes and their symbiotic Xenorhabdus bacteria. Despite low mean fitness in the novel association, considerable variation in nematode reproduction was observed across replicate populations. We selected the most productive infections, co-passaging this novel mutualism nine times to determine whether selection could improve the fitness of either or both partners. We found that neither partner showed increased fitness over time. Our results suggest that the variation in association success was not heritable and that mutational input was insufficient to allow evolution to facilitate this host shift. Thus, post-association costs of host switching may represent a formidable barrier to novel partnerships among sympatric mutualists.

2.
J Evol Biol ; 35(7): 962-972, 2022 07.
Article in English | MEDLINE | ID: mdl-35661463

ABSTRACT

Coevolution between mutualists can lead to reciprocal specialization, potentially causing barriers to host switching. Here, we conducted assays to identify pre- and post-association barriers to host switching by endosymbiotic bacteria, both within and between two sympatric nematode clades. In nature, Steinernema nematodes and Xenorhabdus bacteria form an obligate mutualism. Free-living juvenile nematodes carry Xenorhabdus in a specialized intestinal receptacle. When nematodes enter an insect, they release the bacteria into the insect hemocoel. The bacteria aid in killing the insect and facilitate nematode reproduction. Prior to dispersing from the insect, juvenile nematodes must form an association with their symbionts; the bacteria must adhere to the intestinal receptacle. We tested for pre-association barriers by comparing the effects of bacterial strains on native versus non-native nematodes via their virulence towards, nutritional support of, and ability to associate with different nematode species. We then assessed post-association barriers by measuring the relative fitness of nematodes carrying each strain of bacteria. We found evidence for both pre- and post-association barriers between nematode clades. Specifically, some bacteria were highly virulent to non-native hosts, and some nematode hosts carried fewer cells of non-native bacteria, creating pre-association barriers. In addition, reduced infection success and lower nematode reproduction were identified as post-association barriers. No barriers to symbiont switching were detected between nematode species within the same clade. Overall, our study suggests a framework that could be used to generate predictions for the evolution of barriers to host switching in this and other systems.


Subject(s)
Rhabditida , Xenorhabdus , Animals , Bacteria , Insecta , Rhabditida/microbiology , Symbiosis , Sympatry , Xenorhabdus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...