Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2807: 195-208, 2024.
Article in English | MEDLINE | ID: mdl-38743230

ABSTRACT

N6-methyladenosine (m6A) modification of RNA is an important area in studying viral replication, cellular responses, and host immunity. HIV-1 RNA contains multiple m6A modifications that regulate viral replication and gene expression. HIV-1 infection of CD4+ T-cells or HIV-1 envelope protein treatment upregulates m6A levels of cellular RNA. Changes in the m6A modification of cellular transcripts in response to HIV-1 infection provide new insights into the mechanisms of posttranscriptional gene regulation in the host cell. To better investigate the functions of m6A modification in HIV-1 infection and innate immune responses, it is helpful to standardize basic protocols. Here, we describe a method for the selective enrichment of m6A-modified RNA from HIV-1-infected primary CD4+ T-cells based on immunoprecipitation. The enriched RNA with m6A modifications can be used in a variety of downstream applications to determine the methylation status of viral or cellular RNA at resolution from transcript level down to single nucleotide.


Subject(s)
Adenosine , CD4-Positive T-Lymphocytes , HIV Infections , HIV-1 , RNA, Viral , HIV-1/genetics , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , HIV Infections/virology , Methylation , Virus Replication , Immunoprecipitation/methods
2.
Article in English | MEDLINE | ID: mdl-38753726

ABSTRACT

RNA N6-methyladenosine (m6A) modification is important for regulating gene expression and innate immune responses to viral infection. HIV-1 in vitro infection induces a significant increase in m6A modification of cellular RNA; however, whether m6A levels of cellular RNA are affected by HIV-1 replication or by antiretroviral therapy (ART) in infected individuals remains unknown. Using dot blot or enzyme-linked immunosorbent assay, we measured RNA m6A levels of peripheral blood mononuclear cells (PBMCs) from healthy donors or HIV-1-infected individuals with or without ART. Using a reverse transcription-quantitative polymerase chain reaction array, we quantified expression levels of 84 type-I interferon (IFN-I)-responsive genes in PBMCs from some individuals of these three groups. RNA m6A levels in PBMCs from HIV-1 viremic patients (n = 10) were significantly higher (p ≤ .0001) compared with ART-treated individuals (n = 22) or 1.5-fold higher compared with healthy donors (n = 14). However, the increase in RNA m6A levels did not correlate with changes in the expression of 10 m6A-regulatory genes. We found significant upregulation and downregulation in the expression of several IFN-I-responsive genes from HIV-1 viremic patients (n = 4) and ART-treated patients (n = 6) compared with healthy donors (n = 5), respectively. Our results suggest that post-transcriptional m6A modification may contribute to the regulation of IFN-I-responsive gene expression during HIV-1 infection and ART.

3.
Viruses ; 16(1)2024 01 16.
Article in English | MEDLINE | ID: mdl-38257827

ABSTRACT

Epitranscriptomic RNA modifications play a crucial role in the posttranscriptional regulation of gene expression. N6-methyladenosine (m6A) is the most prevalent internal modification of eukaryotic RNA and plays a pivotal role in RNA fate. RNA m6A modification is regulated by a group of cellular proteins, methyltransferases (writers) and demethylases (erasers), which add and remove the methyl group from adenosine, respectively. m6A modification is recognized by a group of cellular RNA-binding proteins (readers) that specifically bind to m6A-modified RNA, mediating effects on RNA stability, splicing, transport, and translation. The functional significance of m6A modification of viral and cellular RNA is an active area of virology research. In this review, we summarize and analyze the current literature on m6A modification of HIV-1 RNA, the multifaceted functions of m6A in regulating HIV-1 replication, and the role of viral RNA m6A modification in evading innate immune responses to infection. Furthermore, we briefly discuss the future directions and therapeutic implications of mechanistic studies of HIV-1 epitranscriptomic modifications.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , RNA, Viral/genetics , Adenosine
4.
Hear Res ; 435: 108819, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37276687

ABSTRACT

Viral vector gene therapy is an attractive strategy to treat hearing loss. Since hearing loss is due to a variety of pathogenic signaling cascades in distinct cells, viral vectors that can express large or multiple genes in a cell-type specific manner are needed. Helper-dependent adenoviral vectors (HdAd) are safe viral vectors with a large packaging capacity (-36 kb). Despite the potential of HdAd, its use in the inner ear is largely unexplored. Therefore, to evaluate the utility of HdAd for inner ear gene therapy, we created two HdAd vectors that use distinct cellular receptors for transduction: HdAd Serotype Type 5 (HdAd5), the Coxsackie-Adenovirus Receptor (CAR) and a chimeric HdAd 5/35, the human CD46+ receptor (hCD46). We delivered these vectors through the round window (RW) or scala media in CBA/J, C57Bl6/J and hCD46 transgenic mice. Immunostaining in conjunction with confocal microscopy of cochlear sections revealed that multiple cell types were transduced using HdAd5 and HdAd 5/35 in all mouse models. Delivery of HdAd5 via RW in the C57Bl/6 J or CBA/J cochlea resulted in transduced mesenchymal cells of the peri­lymphatic lining and modiolar region while scala media delivery resulted in transduction of supporting cells and inner hair cells. Hd5/35 transduction was CD46 dependent and RW delivery of HdAd5/35 in the hCD46 mouse model resulted in a similar transduction pattern as HdAd5 in the peri­lymphatic lining and modiolar region in the cochlea. Our data indicate that HdAd vectors are promising vectors for use in inner ear gene therapy to treat some causes of hearing loss.


Subject(s)
Deafness , Hair Cells, Vestibular , Hearing Loss , Mice , Animals , Humans , Adenoviridae/genetics , Mice, Inbred CBA , Genetic Therapy , Mice, Transgenic , Hearing Loss/genetics , Genetic Vectors , Deafness/therapy
5.
J Biol Chem ; 299(7): 104925, 2023 07.
Article in English | MEDLINE | ID: mdl-37328105

ABSTRACT

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.


Subject(s)
HIV Infections , Interferon Type I , SAM Domain and HD Domain-Containing Protein 1 , Humans , HEK293 Cells , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Type I/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , HIV Infections/metabolism , Signal Transduction
6.
J Biol Chem ; 299(6): 104750, 2023 06.
Article in English | MEDLINE | ID: mdl-37100289

ABSTRACT

Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in nondividing cells by reducing the intracellular dNTP pool. SAMHD1 also suppresses NF-κB activation induced by inflammatory stimuli and viral infections. Specifically, SAMHD1-mediated reduction of NF-κB inhibitory protein (IκBα) phosphorylation is important for the suppression of NF-κB activation. However, while the inhibitors of NF-κB kinase subunit alpha and beta (IKKα and IKKß) regulate IκBα phosphorylation, the mechanism by which SAMHD1 regulates phosphorylation of IκBα remains unclear. Here, we report that SAMHD1 suppresses phosphorylation of IKKα/ß/γ via interaction with IKKα and IKKß, thus inhibiting subsequent phosphorylation of IκBα in monocytic THP-1 cells and differentiated nondividing THP-1 cells. We show that knockout of SAMHD1 enhanced phosphorylation of IKKα, IKKß, and IKKγ in THP-1 cells treated with the NF-κB activator lipopolysaccharide or infected with Sendai virus and SAMHD1 reconstitution inhibited phosphorylation of IKKα/ß/γ in Sendai virus-infected THP-1 cells. We demonstrate that endogenous SAMHD1 interacted with IKKα and IKKß in THP-1 cells and recombinant SAMHD1 bound to purified IKKα or IKKß directly in vitro. Mapping of these protein interactions showed that the HD domain of SAMHD1 interacts with both IKKα and IKKß and that the kinase domain of IKKα and the ubiquitin-like domain of IKKß are required for their interactions with SAMHD1, respectively. Moreover, we found that SAMHD1 disrupts the interaction between upstream kinase TAK1 and IKKα or IKKß. Our findings identify a new regulatory mechanism by which SAMHD1 inhibits phosphorylation of IκBα and NF-κB activation.


Subject(s)
I-kappa B Kinase , SAM Domain and HD Domain-Containing Protein 1 , Virus Diseases , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Phosphorylation , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , Virus Diseases/immunology , Virus Diseases/metabolism , Cell Line
7.
Microbiol Spectr ; 11(1): e0394322, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36625663

ABSTRACT

N6-methyladenosine (m6A) is a dynamic posttranscriptional RNA modification that plays an important role in determining transcript fate. The functional consequence of m6A deposition is dictated by a group of host proteins that specifically recognize and bind the m6A modification, leading to changes in RNA stability, transport, splicing, or translation. The cellular m6A methylome undergoes changes during certain pathogenic conditions such as viral infections. However, how m6A modification of host cell transcripts and noncoding RNAs change during severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection has not been reported. Here, we define the epitranscriptomic m6A profile of SARS-CoV-2-infected human lung epithelial cells compared to uninfected controls. We identified mRNA and long and small noncoding RNA species that are differentially m6A modified in response to SARS-CoV-2 infection. The most significantly differentially methylated transcript was the precursor of microRNA-4486 (miRNA-4486), which showed significant increases in abundance and percentage of methylated transcripts in infected cells. Pathway analyses revealed that differentially methylated transcripts were significantly associated with several cancer-related pathways, protein processing in the endoplasmic reticulum, cell death, and proliferation. Upstream regulators predicted to be associated with the proteins encoded by differentially methylated mRNAs include several proteins involved in the type-I interferon response, inflammation, and cytokine signaling. IMPORTANCE Posttranscriptional modification of viral and cellular RNA by N6-methyladenosine (m6A) plays an important role in regulating the replication of many viruses and the cellular immune response to infection. We therefore sought to define the epitranscriptomic m6A profile of human lung epithelial cells infected with SARS-CoV-2. Our analyses demonstrate the differential methylation of both coding and noncoding cellular RNAs in SARS-CoV-2-infected cells compared to uninfected controls. Pathway analyses revealed that several of these RNAs may be involved in the cellular response to infection, such as type-I interferon. Our study implicates m6A modification of infected-cell RNA as a mechanism of posttranscriptional gene regulation during SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/pathology , Lung/pathology , Epithelial Cells , RNA/metabolism , Interferons
8.
STAR Protoc ; 3(3): 101616, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35990737

ABSTRACT

N 6-methyladenosine (m6A) modification of human immunodeficiency virus type 1 (HIV-1) RNA plays a critical role in regulating viral replication and evasion of innate immunity. Here, we describe a protocol for the production of HIV-1 with altered m6A levels by manipulating the expression of m6A demethylases in HIV-1 producer cells. RNA from purified virions is analyzed by northern blot and dot blot for m6A levels prior to use in downstream assays to determine the function of m6A modification of viral RNA. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).


Subject(s)
HIV-1 , Adenosine/metabolism , Genomics , HIV-1/genetics , Humans , RNA, Viral/genetics , Virus Replication/genetics
9.
Mol Ther Methods Clin Dev ; 24: 117-126, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35024378

ABSTRACT

Recombinant viral vectors have become integral tools for basic in vivo research applications. Helper-dependent adenoviral (HdAd) vectors have a large packaging capacity of ∼36 kb of DNA that mediate long-term transgene expression in vitro and in vivo. The large carrying capacity of HdAd enables basic research or clinical applications requiring the delivery of large genes or multiple transgenes, which cannot be packaged into other widely used viral vectors. Currently, common HdAd production systems use an Ad helper virus (HV) with a packaging signal (Ψ) that is flanked by either loxP or FRT sites, which is excised in producer cells expressing Cre or Flp recombinases to prevent HV packaging. However, these production systems prevent the use of HdAd vectors for genetic strategies that rely on Cre or Flp recombination for cell-type-specific expression. To overcome these limitations, we developed the VikAD production system, which is based on producer cells expressing the Vika recombinase and an HV that contains a Ψ flanked by vox sites. The availability of this production system will greatly expand the utility and flexibility of HdAd vectors for use in research applications to monitor and manipulate cellular activity with increased specificity.

10.
Microbiol Spectr ; 9(3): e0165321, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34935422

ABSTRACT

HIV-1 envelope glycoprotein (Env) interacts with cell surface receptors and induces membrane fusion to enter cells and initiate infection. HIV-1 Env on virions comprises trimers of the gp120 and gp41 subunits. The polar region (PR) in the N-terminus of gp41 is composed of 17 conserved residues, including seven polar amino acids. We have reported that the PR is crucial for Env trimer stability and fusogenicity. Mutations of three highly conserved residues (S534P, T536A, or T538A) in the PR of HIV-1NL4-3 significantly decrease or eliminate viral infectivity due to defective fusion and increased gp120 shedding. To identify compensatory Env mutations that restore viral infectivity, we infected a CD4+ T-cell line with PR mutants pseudotyped with wild-type (WT) HIV-1 Env or vesicular stomatitis virus envelope glycoprotein (VSV-G). We found that PR mutant-infected CD4+ T-cells produced infectious viruses at 7 days postinfection (dpi). Sequencing of the env cDNA from cells infected with the recovered HIV-1 revealed that the S534P mutant reverted to serine or threonine at residue 534. Interestingly, the combined PR-mutant HIV-1 (S534P/T536A or S534P/T536A/T538A) recovered its infectivity and reverted to S534, but maintained the T536A or T538A mutation, suggesting that HIV-1 replication in CD4+ T-cells can tolerate T536A and T538A Env mutations, but not S534P. Moreover, VSV-G-pseudotyped HIV-1 mutants with a fusion-defective Env also recovered infectivity in CD4+ T-cells through reverted Env mutations. These new observations help define the Env residues critical for HIV-1 infection and demonstrate that Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells. IMPORTANCE Our previous mutagenesis study revealed that serine at position 534 of HIV-1 Env is critical for viral infectivity. We found that HIV-1 Env containing serine to proline mutation at position 534 (S534P) are incapable of supporting virus-cell and cell-cell fusion. To investigate whether these mutant viruses can recover infectivity and what amino acid changes account for recovered infectivity, we infected CD4+ T-cells with Env-mutant HIV-1 pseudotyped with WT HIV-1 Env or VSV-G and monitored cultures for the production of infectious viruses. Our results showed that most of the pseudotyped viruses recovered their infectivity within 1-week postinfection, and all the recovered viruses mutated proline at position 534. These observations help define the Env residues critical for HIV-1 replication. Because Env-defective HIV-1 mutants can rapidly regain replication competency in CD4+ T-cells, it is important to carefully monitor viral mutations for biosafety consideration when using HIV-1-derived lentivirus vectors pseudotyped with Env.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , Amino Acid Motifs , Cell Line , HIV-1/chemistry , HIV-1/physiology , Humans , Mutation , Virus Replication , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism
11.
Ageing Res Rev ; 59: 101042, 2020 05.
Article in English | MEDLINE | ID: mdl-32173536

ABSTRACT

Age-related hearing loss (ARHL) is the most prevalent sensory deficit. ARHL reduces the quality of life of the growing population, setting seniors up for the enhanced mental decline. The size of the needy population, the structural deficit, and a likely research strategy for effective treatment of chronic neurosensory hearing in the elderly are needed. Although there has been profound advancement in auditory regenerative research, there remain multiple challenges to restore hearing loss. Thus, additional investigations are required, using novel tools. We propose how the (1) flat epithelium, remaining after the organ of Corti has deteriorated, can be converted to the repaired-sensory epithelium, using Sox2. This will include (2) developing an artificial gene regulatory network transmitted by (3) large viral vectors to the flat epithelium to stimulate remnants of the organ of Corti to restore hair cells. We hope to unite with our proposal toward the common goal, eventually restoring a functional human hearing organ by transforming the flat epithelial cells left after the organ of Corti loss.


Subject(s)
Aging/pathology , Cochlea/pathology , Presbycusis/pathology , Quality of Life , SOXB1 Transcription Factors/metabolism , Aged , Hair Cells, Auditory/pathology , Hearing Loss , Humans
12.
mBio ; 7(1): e01865-15, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26733069

ABSTRACT

UNLABELLED: Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Due to the limited coding capacity of the viral genome and the complexity of the viral life cycle, host cell proteins play essential roles throughout the course of viral infection. Host RNA-binding proteins mediate various aspects of virus replication through their physical interactions with viral RNA. Here we describe a technique designed to identify such interactions in the context of infected cells using UV cross-linking followed by antisense-mediated affinity purification and mass spectrometry. Using this approach, we identified interactions, several of them novel, between host proteins and dengue viral RNA in infected Huh7 cells. Most of these interactions were subsequently validated using RNA immunoprecipitation. Using small interfering RNA (siRNA)-mediated gene silencing, we showed that more than half of these host proteins are likely involved in regulating virus replication, demonstrating the utility of this method in identifying biologically relevant interactions that may not be identified using traditional in vitro approaches. IMPORTANCE: Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Viral RNA molecules physically interact with cellular RNA-binding proteins (RBPs) throughout the course of infection; the identification of such interactions will lead to the elucidation of the molecular mechanisms of virus replication. Until now, the identification of host proteins bound to dengue viral RNA has been accomplished using in vitro strategies. Here, we used a method for the specific purification of dengue viral ribonucleoprotein (RNP) complexes from infected cells and subsequently identified the associated proteins by mass spectrometry. We then validated a functional role for the majority of these proteins in mediating efficient virus replication. This approach has broad relevance to virology and RNA biology, as it could theoretically be used to purify any viral RNP complex of interest.


Subject(s)
Dengue Virus/physiology , Host-Pathogen Interactions , RNA, Viral/metabolism , RNA-Binding Proteins/isolation & purification , Virus Replication , Cell Line , Gene Silencing , Hepatocytes/chemistry , Hepatocytes/virology , Humans , Immunoprecipitation , Mass Spectrometry , RNA-Binding Proteins/classification
13.
Methods ; 91: 13-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26276314

ABSTRACT

The identification of RNA-binding proteins that physically associate with viral RNA molecules during infection can provide insight into the molecular mechanisms of RNA virus replication. Until recently, such RNA-protein interactions have been identified predominantly with the use of in vitro assays that may not accurately reflect associations that occur in the context of a living cell. Here we describe a method for the specific affinity purification of dengue virus RNA and associated proteins using in vivo cross-linking followed by antisense-mediated affinity purification. RNA-binding proteins that specifically co-purify with viral RNA using this method can be identified en masse by mass spectrometry. This strategy can potentially be adapted to the purification of any viral RNA species of interest.


Subject(s)
Chromatography, Affinity/methods , Dengue Virus/metabolism , Oligodeoxyribonucleotides, Antisense , RNA, Viral/isolation & purification , Ribonucleoproteins/isolation & purification , Dengue Virus/genetics , Mass Spectrometry , RNA, Viral/metabolism , Ribonucleoproteins/metabolism
14.
J Virol ; 86(18): 9995-10005, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22761384

ABSTRACT

Human cytomegalovirus (HCMV) virions are structurally complex, and the mechanisms by which they are assembled are poorly understood, especially with respect to the cytoplasmic phase of assembly, during which the majority of the tegument is acquired and final envelopment occurs. These processes occur at a unique cytoplasmic structure called the assembly complex, which is formed through a reorganization of the cellular secretory apparatus. The HCMV tegument protein UL99 (pp28) is essential for viral replication at the stage of secondary envelopment. We previously demonstrated that UL99 interacts with the essential tegument protein UL94 in infected cells as well as in the absence of other viral proteins. Here we show that UL94 and UL99 alter each other's localization and that UL99 stabilizes UL94 in a binding-dependent manner. We have mapped the interaction between UL94 and UL99 to identify the amino acids of each protein that are required for their interaction. Mutation of these amino acids in the context of the viral genome demonstrates that HCMV is completely defective for replication in the absence of the interaction between UL94 and UL99. Further, we demonstrate that in the absence of their interaction, both UL94 and UL99 exhibit aberrant localization and do not accumulate at the assembly complex during infection. Taken together, our data suggest that the interaction between UL94 and UL99 is essential for the proper localization of each protein to the assembly complex and thus for the production of infectious virus.


Subject(s)
Capsid Proteins/physiology , Cytomegalovirus/physiology , Phosphoproteins/physiology , Viral Proteins/physiology , Amino Acid Sequence , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell Line , Cytomegalovirus/genetics , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Two-Hybrid System Techniques , Viral Proteins/chemistry , Viral Proteins/genetics , Virus Assembly/physiology , Virus Replication/genetics , Virus Replication/physiology
15.
J Virol ; 86(5): 2523-32, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22171267

ABSTRACT

Human cytomegalovirus (HCMV) virions are structurally complex, and the mechanisms by which they are assembled are poorly understood. However, several tegument proteins are known to be essential for proper particle assembly and maturation. Despite intense investigation, the function of many tegument proteins remains unknown. The HCMV UL94 gene is conserved among all herpesviruses and encodes a virion protein of unknown function. We demonstrate here that UL94 is a tegument protein that is expressed with true-late kinetics and localizes to the viral assembly complex during infection. To elucidate the function of UL94, we constructed a UL94-null mutant, designated UL94stop. This mutant is completely defective for replication, demonstrating that UL94 is essential. Phenotypic analysis of the UL94stop mutant shows that in the absence of UL94, viral gene expression and genome synthesis occur at wild-type levels. However, analysis of the localization of viral proteins to the cytoplasmic assembly complex shows that the essential tegument protein UL99 (pp28) exhibits aberrant localization in cells infected with the UL94stop mutant. Finally, we show that there is a complete block in secondary envelopment in the absence of UL94. Taken together, our data suggest that UL94 functions late in infection to direct UL99 to the assembly complex, thereby facilitating secondary envelopment of virions.


Subject(s)
Capsid Proteins/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Virion/physiology , Virus Assembly , Capsid Proteins/genetics , Cell Line , Cytomegalovirus/genetics , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics
16.
J Virol ; 85(1): 440-7, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20962080

ABSTRACT

Human cytomegalovirus (HCMV) virions are composed of a DNA-containing nucleocapsid surrounded by a tegument layer and host-derived lipid envelope studded with virally encoded glycoproteins. These complex virions are estimated to be composed of more than 50 viral proteins. Assembly of HCMV virions is poorly understood, especially with respect to acquisition of the tegument; however, it is thought to involve the stepwise addition of virion components through protein-protein interactions. We sought to identify interactions among HCMV virion proteins using yeast two-hybrid analysis. Using 33 known capsid and tegument proteins, we tested 1,089 pairwise combinations for binary interaction in the two-hybrid assay. We identified 24 interactions among HCMV virion proteins, including 13 novel interactions among tegument proteins and one novel interaction between capsid proteins. Several of these novel interactions were confirmed by coimmunoprecipitation of protein complexes from transfected cells. In addition, we demonstrate three of these interactions in the context of HCMV infection. This study reveals several new protein-protein interactions among HCMV tegument proteins, some of which are likely important for HCMV replication and pathogenesis.


Subject(s)
Cytomegalovirus/metabolism , Protein Interaction Mapping , Viral Proteins/metabolism , Virion/metabolism , Cells, Cultured , Cytomegalovirus/genetics , Fibroblasts/metabolism , Fibroblasts/virology , Humans , Immunoprecipitation , Kidney/cytology , Kidney/virology , Protein Binding , Transfection , Two-Hybrid System Techniques , Virus Assembly
17.
J Virol ; 84(18): 9649-54, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20610707

ABSTRACT

The human cytomegalovirus (HCMV) tegument protein UL69 is important for efficient viral replication at low multiplicities of infection. Several molecular mechanisms by which UL69 contributes to HCMV replication have been proposed, including UL69's ability to interact with the mRNA export factors UAP56 and URH49 to facilitate the shuttling of viral mRNAs from the nuclei of infected cells. Using a UL69 viral mutant that is unable to bind UAP56 and URH49, we demonstrated that UL69's interaction with UAP56 or URH49 does not contribute to the growth phenotype associated with the UL69 deletion mutant.


Subject(s)
Cytomegalovirus/physiology , DEAD-box RNA Helicases/metabolism , Host-Pathogen Interactions , Trans-Activators/metabolism , Virus Replication , Animals , Cell Line , Gene Deletion , Humans , Mice , Mutant Proteins/metabolism , Protein Binding , Trans-Activators/genetics
18.
J Neurochem ; 113(6): 1481-90, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20345760

ABSTRACT

Our previous work demonstrated that immunoproteasome is up-regulated in the retina and brain in response to injury that does not involve an inflammatory response (J. Neurochem. 2008; 106:158). These results suggest additional non-immune functions for the immunoproteasome in the cellular stress response pathway. The present study further investigates the potential involvement of the immunoproteasome in responding to the chronic stress of aging or oxidant exposure in the retina and cultured retinal pigment epithelial (RPE) cells from knock-out mice missing either one (lmp7(-/-)) or two (lmp7(-/-)/mecl-1(-/-)) immunoproteasome subunits. We show that aging and chronic oxidative stress up-regulates immunoproteasome in the retina and RPE from wild-type mice. No up-regulation of LMP2 was observed in retinas or RPE lacking MECL-1 and/or LMP7, suggesting that the full complement of immunoproteasome subunits is required to achieve maximal up-regulation in response to stress. We also show that RPE deficient in immunoproteasome are more susceptible to oxidation-induced cell death, supporting a role for immunoproteasome in protecting from oxidative stress. These results provide key mechanistic insight into novel aspects of proteasome biology and are an important first step in identifying alternative roles for retinal immunoproteasome that are unrelated to its role in the immune response.


Subject(s)
Cysteine Endopeptidases/deficiency , Epithelial Cells/metabolism , Gene Expression Regulation/genetics , Oxidative Stress/physiology , Receptors, Cytoplasmic and Nuclear/deficiency , Retinal Pigment Epithelium/cytology , Up-Regulation/physiology , Aging , Analysis of Variance , Animals , Cells, Cultured , Cysteine Endopeptidases/genetics , Epithelial Cells/drug effects , Hydrogen Peroxide/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidants/pharmacology , Proteasome Endopeptidase Complex , Protein Subunits/genetics , Protein Subunits/metabolism , Retinal Pigment Epithelium/drug effects , Up-Regulation/drug effects
19.
Radiat Res ; 168(2): 183-92, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17638400

ABSTRACT

Human gliomas are among the most aggressive tumors, and they respond poorly to treatment. The efficacy of surgical, radiation and chemotherapy treatment of these tumors is limited by the development of resistance. Interventions aimed at altering the response of these tumors to radiation or chemotherapy treatments are needed to improve survival rate and prognosis. Glioblastomas are generally p53 (TP53) functional tumors; however, DNA repair pathways are activated in these tumors instead of the pathways to apoptosis. Thus resistance to treatment is seen in the ability of these tumors to overcome cell death. We present data that demonstrate that U87MG glioblastoma cells transduced with a dominant-negative p53 adenovirus construct become sensitized to radiation-induced mitotic catastrophe through abrogation of G(2)/M checkpoint control and overaccumulation of cyclin B1. These findings suggest that interventions abrogating the G(2)/M checkpoint sensitize these cells to radiation-induced mitotic catastrophe and may represent a novel mechanism to increase the efficacy of radiation in wild-type p53 gliomas that are resistant to apoptosis.


Subject(s)
Glioblastoma/radiotherapy , Mitosis/radiation effects , Tumor Suppressor Protein p53/physiology , Adenoviridae/genetics , CDC2 Protein Kinase/physiology , Cell Line, Tumor , Cyclin B/physiology , Cyclin B1 , DNA Damage , DNA Repair , G1 Phase , Glioblastoma/pathology , Humans , Transduction, Genetic
20.
Cancer Cell Int ; 6: 11, 2006 Apr 26.
Article in English | MEDLINE | ID: mdl-16640786

ABSTRACT

BACKGROUND: We have demonstrated that in some human cancer cells both chronic mild heat and ionizing radiation exposures induce a transient block in S and G2 phases of the cell cycle. During this delay, cyclin B1 protein accumulates to supranormal levels, cyclin B1-dependent kinase is activated, and abrogation of the G2/M checkpoint control occurs resulting in mitotic catastrophe (MC). RESULTS: Using syngenic mouse embryonic fibroblasts (MEF) with wild-type or mutant p53, we now show that, while both cell lines exhibit delays in S/G2 phase post-irradiation, the mutant p53 cells show elevated levels of cyclin B1 followed by MC, while the wild-type p53 cells present both a lower accumulation of cyclin B1 and a lower frequency of MC. CONCLUSION: These results are in line with studies reporting the role of p53 as a post-transcriptional regulator of cyclin B1 protein and confirm that dysregulation of cyclin B1 promote radiation-induced MC. These findings might be exploited to design strategies to augment the yield of MC in tumor cells that are resistant to radiation-induced apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...