Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Anal Chem ; 96(3): 1214-1222, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38189247

ABSTRACT

Lipid nanoparticle-encapsulated mRNA (LNP-mRNA) holds great promise as a novel modality for treating a broad range of diseases. The ability to quantify mRNA accurately in therapeutic products helps to ensure consistency and safety. Here, we consider a central aspect of accuracy, measurement traceability, which establishes trueness in quantity. In this study, LNP-mRNA is measured in situ using a novel liquid chromatography-mass spectrometry (LC-MS) approach with traceable quantification. Previous works established that oligonucleotide quantification is possible through the accounting of an oligomer's fundamental nucleobases, with traceability established through common nucleobase calibrators. This sample preparation does not require mRNA extraction, detergents, or enzymes and can be achieved through direct acid hydrolysis of an LNP-mRNA product prior to an isotope dilution strategy. This results in an accurate quantitative analysis of mRNA, independent of time or place. Acid hydrolysis LC-MS is demonstrated to be amenable to measuring mRNA as both an active substance or a formulated mRNA drug product.


Subject(s)
Isotopes , Liposomes , Nanoparticles , RNA, Messenger/genetics , Mass Spectrometry
2.
Anal Bioanal Chem ; 415(5): 809-821, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36507958

ABSTRACT

The US National Institute of Standards and Technology (NIST) developed a Standard Reference Material® (SRM®) 3949 Folate Vitamers in Frozen Human Serum to replace SRM 1955 Homocysteine and Folate in Human Serum. The presence of increased endogenous levels of folic acid and 5-methyltetrahydrofolate (5mTHF) in SRM 3949, enhanced folate stability via addition of ascorbic acid, and inclusion of values for additional minor folates are improvements over SRM 1955 that should better serve the clinical folate measurement community. The new SRM contains folates at three levels. To produce SRM 3949, pilot sera were collected from 15 individual donors, 5 of whom were given a 400-µg folic acid supplement 1 h prior to blood draw to increase serum levels of 5mTHF and folic acid for the high-level material. To stabilize the folates, 0.5% (mass concentration) ascorbic acid was added as soon as possible after preparation of serum. These pilot sera were screened for five folates plus the pyrazino-s-triazine derivative of 4-α-hydroxy-5-methyltetrahydrofolate (MeFox) at the US Centers for Disease Control and Prevention (CDC) by isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). Based on these results, a blending protocol was specified to obtain the three desired folate concentrations for SRM 3949. ID-LC-MS/MS analysis at the CDC and NIST was utilized to assign values for folic acid and 5mTHF, as well as several minor folates.


Subject(s)
Folic Acid , Tandem Mass Spectrometry , Humans , Folic Acid/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reference Standards , Ascorbic Acid
3.
Clin Chem Lab Med ; 61(1): 78-85, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36279170

ABSTRACT

OBJECTIVES: Vitamin D-binding protein (VDBP), a serum transport protein for 25-hydroxyvitamin D [25(OH)D], has three common proteoforms which have co-localized amino acid variations and glycosylation. A monoclonal immunoassay was found to differentially detect VDBP proteoforms and methods using liquid chromatography-tandem mass spectrometry (LC-MS/MS) might be able to overcome this limitation. Previously developed multiple reaction monitoring LC-MS/MS methods for total VDBP quantification represent an opportunity to probe the potential effects of proteoforms on proteolysis, instrument response and quantification accuracy. METHODS: VDBP was purified from homozygous human donors and quantified using proteolysis or acid hydrolysis and LC-MS/MS. An interlaboratory comparison was performed using pooled human plasma [Standard Reference Material® 1950 (SRM 1950) Metabolites in Frozen Human Plasma] and analyses with different LC-MS/MS methods in two laboratories. RESULTS: Several shared peptides from purified proteoforms were found to give reproducible concentrations [≤2.7% coefficient of variation (CV)] and linear instrument responses (R2≥0.9971) when added to human serum. Total VDBP concentrations from proteolysis or amino acid analysis (AAA) of purified proteoforms had ≤1.92% CV. SRM 1950, containing multiple proteoforms, quantified in two laboratories resulted in total VDBP concentrations with 7.05% CV. CONCLUSIONS: VDBP proteoforms were not found to cause bias during quantification by LC-MS/MS, thus demonstrating that a family of proteins can be accurately quantified using shared peptides. A reference value was assigned for total VDBP in SRM 1950, which may be used to standardize methods and improve the accuracy of VDBP quantification in research and clinical samples.


Subject(s)
Tandem Mass Spectrometry , Vitamin D-Binding Protein , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Proteolysis , Vitamin D , Blood Proteins/metabolism , Amino Acids/metabolism
4.
Front Mol Biosci ; 9: 876780, 2022.
Article in English | MEDLINE | ID: mdl-35601836

ABSTRACT

Biopharmaceuticals such as monoclonal antibodies are required to be rigorously characterized using a wide range of analytical methods. Various material properties must be characterized and well controlled to assure that clinically relevant features and critical quality attributes are maintained. A thorough understanding of analytical method performance metrics, particularly emerging methods designed to address measurement gaps, is required to assure methods are appropriate for their intended use in assuring drug safety, stability, and functional activity. To this end, a series of interlaboratory studies have been conducted using NISTmAb, a biopharmaceutical-representative and publicly available monoclonal antibody test material, to report on state-of-the-art method performance, harmonize best practices, and inform on potential gaps in the analytical measurement infrastructure. Reported here is a summary of the study designs, results, and future perspectives revealed from these interlaboratory studies which focused on primary structure, post-translational modifications, and higher order structure measurements currently employed during biopharmaceutical development.

5.
Clin Chim Acta ; 517: 171-197, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713690

ABSTRACT

Vitamin D, an important hormone with a central role in calcium and phosphate homeostasis, is required for bone and muscle development as well as preservation of musculoskeletal function. The most abundant vitamin D metabolite is 25-hydroxyvitamin D [25(OH)D], which is currently considered the best marker to evaluate overall vitamin D status. 25(OH)D is therefore the most commonly measured metabolite in clinical practice. However, several other metabolites, although not broadly measured, are useful in certain clinical situations. Vitamin D and all its metabolites are circulating in blood bound to vitamin D binding protein, (VDBP). This highly polymorphic protein is not only the major transport protein which, along with albumin, binds over 99% of the circulating vitamin D metabolites, but also participates in the transport of the 25(OH)D into the cell via a megalin/cubilin complex. The accurate measurement of 25(OH)D has proved a difficult task. Although a reference method and standardization program are available for 25(OH)D, the other vitamin D metabolites still lack this. Interpretation of results, creation of clinical supplementation, and generation of therapeutic guidelines require not only accurate measurements of vitamin D metabolites, but also the accurate measurements of several other "molecules" related with bone metabolism. IFCC understood this priority and a committee has been established with the task to support and continue the standardization processes of vitamin D metabolites along with other bone-related biomarkers. In this review, we present the position of this IFCC Committee on Bone Metabolism on the latest developments concerning the measurement and standardization of vitamin D metabolites and its binding protein, as well as clinical indications for their measurement and interpretation of the results.


Subject(s)
Bone and Bones/metabolism , Vitamin D-Binding Protein , Vitamin D , Biomarkers , Calcifediol , Humans
6.
Clin Mass Spectrom ; 16: 11-17, 2020 Apr.
Article in English | MEDLINE | ID: mdl-34820515

ABSTRACT

Vitamin D plays a vital role in successful pregnancy outcomes for both the mother and fetus. Vitamin D is bound to vitamin D binding protein (VDBP) in blood and is carried to the liver, kidneys and other target tissues. Accurate measurements of the clinically measured metabolite of vitamin D, 25-hydroxyvitamin D [25(OH)D], depend on complete removal from the binding protein. It has been found that VDBP concentrations increase in maternal serum during pregnancy, obfuscating the accuracy of 25(OH)D concentration measurements in pregnant women. Additionally, measurements of VDBP concentrations during pregnancy have been performed using immunoassays, which suffer from variations due to differences in antibody epitopes, making clinical comparisons difficult. Quantification of VDBP is also of interest because changes in VDBP expression levels may indicate negative outcomes during pregnancy, such as preterm delivery and restricted fetal growth. To address the need for accurate measurement of VDBP during pregnancy, a method using liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) was developed to quantify VDBP using isotopically labeled peptides as internal standards. This method was used to quantify VDBP in Standard Reference Material® (SRM) 1949 Frozen Human Prenatal Serum, which was prepared from separate serum pools of women who were not pregnant and women during each trimester of pregnancy. VDBP concentrations were found to be lowest in the serum pool from non-pregnant women and increased in each trimester. These data had good repeatability and were found to be suitable for reference value assignment of VDBP in SRM 1949.

7.
Anal Chem ; 91(22): 14569-14576, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31638773

ABSTRACT

Accurate, traceable quantification of ribonucleotide or deoxyribonucleotide oligomers is achievable using acid hydrolysis and isotope dilution mass spectrometry (ID-MS). In this work, formic acid hydrolysis is demonstrated to generate stoichiometric release of nucleobases from intact oligonucleotides, which then can be measured by ID-MS, facilitating true and precise absolute quantification of RNA, short linearized DNA, or genomic DNA. Surrogate nucleobases are quantified with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow, using multiple reaction monitoring (MRM). Nucleobases were chromatographically resolved using a novel cation-exchange separation, incorporating a pH gradient. Trueness of this quantitative assay is estimated from agreement among the surrogate nucleobases and by comparison to concentrations provided for commercial materials or Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST). Comparable concentration estimates using NanoDrop spectrophotometry or established from droplet-digital polymerase chain reaction (ddPCR) techniques agree well with the results. Acid hydrolysis-ID-LC-MS/MS provides excellent quantitative selectivity and accuracy while enabling traceability to mass unit. Additionally, this approach can be uniquely useful for quantifying modified nucleobases or mixtures.


Subject(s)
Chromatography, Liquid/methods , DNA, Viral/analysis , RNA/analysis , Tandem Mass Spectrometry/methods , BK Virus/chemistry , DNA, Viral/chemistry , Deoxyribonucleotides/analysis , Deoxyribonucleotides/chemistry , Formates/chemistry , Humans , Hydrolysis , RNA/chemistry , Ribonucleotides/analysis , Ribonucleotides/chemistry
8.
Anal Bioanal Chem ; 410(11): 2805-2813, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29492621

ABSTRACT

Quantification of cardiac troponin I (cTnI), a protein biomarker used for diagnosing myocardial infarction, has been achieved in native patient plasma based on an immunoaffinity enrichment strategy and isotope dilution (ID) liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The key steps in the workflow involved isolating cTnI from plasma using anti-cTnI antibody coupled to magnetic nanoparticles, followed by an enzymatic digestion with trypsin. Three tryptic peptides from cTnI were monitored and used for quantification by ID-LC-MS/MS via multiple reaction monitoring (MRM). Measurements were performed using a matrix-matched calibration system. NIST SRM 2921 Human Cardiac Troponin Complex acted as the calibrant and a full-length isotopically labeled protein analog of cTnI was used as an internal standard. The method was successfully demonstrated on five patient plasma samples, with cTnI concentrations measuring between 4.86 µg/L and 11.3 µg/L (signifying moderate myocardial infarctions). LC-MS/MS measurement precision was validated by three unique peptides from cTnI and two MRM transitions per peptide. Relative standard deviation (CV) from the five plasma samples was determined to be ≤14.3%. This study has demonstrated that quantification of cTnI in native plasma from myocardial infarction patients can be achieved based on an ID-LC-MS/MS method. The development of an ID-LC-MS/MS method for cTnI in plasma is a first step for future certification of matrix-based reference materials, which may be used to help harmonize discordant cTnI clinical assays. Graphical abstract A schematic of the workflow for measuring cardiac troponin I (cTnI), a low-abundant protein biomarker used for diagnosing myocardial infarction, in human plasma by isotope-dilution LC-MS/MS analysis.


Subject(s)
Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Troponin I/blood , Amino Acid Sequence , Antibodies, Immobilized/chemistry , Biomarkers/analysis , Biomarkers/blood , Humans , Immunosorbent Techniques , Limit of Detection , Magnetite Nanoparticles/chemistry , Myocardial Infarction/blood , Peptides/analysis , Peptides/blood , Troponin I/analysis
9.
Anal Bioanal Chem ; 410(8): 2127-2139, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29411089

ABSTRACT

The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing. It must therefore embody the quality and characteristics of a typical biopharmaceutical product and be available long-term in a stable format with consistent product quality attributes. A stratified sampling and analysis plan using a series of qualified analytical and biophysical methods is described that assures RM 8671 meets these criteria. Results for the first three lots of RM 8671 highlight the consistency of material attributes with respect to size, charge, and identity. RM 8671 was verified to be homogeneous both within and between vialing lots, demonstrating the robustness of the lifecycle management plan. It was analyzed in concert with the in-house primary sample 8670 (PS 8670) to provide a historical link to this seminal material. RM 8671 was verified to be fit for its intended purpose as a technology innovation tool, external system suitability control, and cross-industry harmonization platform. Graphical abstract The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Animals , Biosimilar Pharmaceuticals/chemistry , Chromatography, Gel/methods , Chromatography, Gel/standards , Drug Stability , Dynamic Light Scattering/methods , Dynamic Light Scattering/standards , Electrophoresis, Capillary/methods , Electrophoresis, Capillary/standards , Humans , Microscopy/methods , Microscopy/standards , Models, Molecular , Peptide Mapping/methods , Peptide Mapping/standards , Protein Stability , Quality Control , Reference Standards , Spectrophotometry, Ultraviolet/methods , Spectrophotometry, Ultraviolet/standards , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards
10.
J Proteome Res ; 16(11): 4185-4195, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28990783

ABSTRACT

Vitamin-D-binding protein (VDBP), a transporter of 25-hydroxyvitamin D metabolites, has three common isoforms. The relationship of the isoforms and their glycosylation state with various diseases has been under recent examination. In this work, liquid chromatography coupled to isotope dilution mass spectrometry was evaluated for quantification of VDBP, the three common isoforms, and total glycosylation. Protocols using guanidine, urea, RapiGest, trifluoroethanol, or tris buffer were also evaluated for optimal tryptic digestion. Differences in peptide release were detected between purified and plasma VDBP; however, for both protein sources, ELPEHTVK, TSALSAK, and VLEPTLK concentrations were reproducible between most protocols tested. The isoform-specific peptides, LPDATPK, LPDATPTELAK, and LPEATPTELAK, were optimally released when TFE was added to plasma. The total VDBP concentration calculated from the three shared peptides resulted in 97.6% accuracy compared with the concentration from amino acid analysis. Glycosylation of VDBP was also calculated for purified protein and donor samples using the ratio of the isoform-specific peptide(s) to the total protein concentration. Glycosylation of purified VDBP was found to be 99.5-111.1% the value determined by semiquantitative analysis of the intact protein by LC-MS. This approach may be used to quantify other samples containing a mixture of isoforms and post-translational modifications.


Subject(s)
Protein Isoforms/analysis , Vitamin D-Binding Protein/analysis , Chromatography, Liquid/methods , Glycosylation , Humans , Mass Spectrometry/methods , Methods
11.
J AOAC Int ; 100(5): 1294-1303, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28917261

ABSTRACT

The National Institute of Standards and Technology (NIST), in collaboration with the National Institutes of Health Office of Dietary Supplements and the Vitamin D Standardization Program, has recently issued a new serum-matrix Standard Reference Material (SRM): 2973 Vitamin D Metabolites in Frozen Human Serum (High Level). SRM 2973 was designed to provide a serum material with a total 25-hydroxyvitamin D [25(OH)D] concentration near 100 nmol/L to complement the existing serum-based SRMs with values assigned for total 25(OH)D between 20 and 80 nmol/L. Values were assigned for 25-hydroxyvitamin D2 [25(OH)D2], 25-hydroxyvitamin D3 [25(OH)D3], 3-epi-25(OH)D3, and total 25(OH)D [the sum of 25(OH)D2 + 25(OH)D3] using the NIST isotope dilution LC with tandem MS (MS/MS) reference measurement procedure (RMP) and related methods. SRM 2973 has a certified value of 98.4 ± 2.1 nmol/L for 25(OH)D3 and reference values of 1.59 ± 0.05 nmol/L for 25(OH)D2 and 5.23 ± 0.20 nmol/L for 3-epi-25(OH)D3. In addition, a candidate RMP for 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] based on LC-MS/MS was used to assign values to SRM 2973 and the existing SRM 972a Vitamin D Metabolites in Frozen Human Serum. Reference values for 24R,25(OH)2D3 were assigned to SRM 2973 (7.51 ± 0.26 nmol/L) and the four levels of SRM 972a: Level 1 (6.38 ± 0.23 nmol/L), Level 2 (3.39 ± 0.12 nmol/L), Level 3 (3.88 ± 0.013 nmol/L), and Level 4 (6.32 ± 0.22 nmol/L). The development of SRM 2973 [with a higher concentration of 25(OH)D3] and the addition of values for 24R,25(OH)2D3 assigned to both SRM 972a and SRM 2973 provide laboratories involved in vitamin D measurements with improved QA tools.


Subject(s)
25-Hydroxyvitamin D 2/blood , Blood Chemical Analysis/standards , Calcifediol/blood , Humans , Tandem Mass Spectrometry/standards , United States , Vitamin D
12.
J AOAC Int ; 100(5): 1260-1276, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28863788

ABSTRACT

Since 2005, the National Institute of Standards and Technology (NIST) has collaborated with the National Institutes of Health (NIH), Office of Dietary Supplements (ODS) to improve the quality of measurements related to human nutritional markers of vitamin D status. In support of the NIH-ODS Vitamin D Initiative, including the Vitamin D Standardization Program (VDSP), NIST efforts have focused on (1) development of validated analytical methods, including reference measurement procedures (RMPs); (2) development of Standard Reference Materials (SRMs); (3) value assignment of critical study samples using NIST RMPs; and (4) development and coordination of laboratory measurement QA programs. As a result of this collaboration, NIST has developed RMPs for 25-hydroxyvitamin D2 [25(OH)D2], 25(OH)D3, and 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3]; disseminated serum-based SRMs with values assigned for 25(OH)D2, 25(OH)D3, 3-epi-25(OH)D3, and 24R,25(OH)2D3; assigned values for critical samples for VDSP studies, including an extensive interlaboratory comparison and reference material commutability study; provided an accuracy basis for the Vitamin D External Quality Assurance Scheme; coordinated the first accuracy-based measurement QA program for the determination of 25(OH)D2, 25(OH)D3, and 3-epi-25(OH)D3 in human serum/plasma; and developed methods and SRMs for the determination of vitamin D and 25(OH)D in food and supplement matrix SRMs. The details of these activities and their benefit and impact to the NIH-ODS Vitamin D Initiative are described.


Subject(s)
25-Hydroxyvitamin D 2/blood , Blood Chemical Analysis/standards , Humans , National Institutes of Health (U.S.) , Quality Control , United States , Vitamin D
13.
J AOAC Int ; 100(5): 1288-1293, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28797319

ABSTRACT

The Vitamin D Standardization Program (VDSP) coordinated a study in 2012 to assess the commutability of reference materials and proficiency testing/external quality assurance materials for total 25-hydroxyvitamin D [25(OH)D] in human serum, the primary indicator of vitamin D status. A set of 50 single-donor serum samples as well as 17 reference and proficiency testing/external quality assessment materials were analyzed by participating laboratories that used either immunoassay or LC-MS methods for total 25(OH)D. The commutability test materials included National Institute of Standards and Technology Standard Reference Material 972a Vitamin D Metabolites in Human Serum as well as materials from the College of American Pathologists and the Vitamin D External Quality Assessment Scheme. Study protocols and data analysis procedures were in accordance with Clinical and Laboratory Standards Institute guidelines. The majority of the test materials were found to be commutable with the methods used in this commutability study. These results provide guidance for laboratories needing to choose appropriate reference materials and select proficiency or external quality assessment programs and will serve as a foundation for additional VDSP studies.


Subject(s)
Blood Chemical Analysis/standards , Laboratory Proficiency Testing , Vitamin D/analogs & derivatives , Humans , Quality Control , Reference Standards , United States , Vitamin D/blood
14.
J AOAC Int ; 100(5): 1244-1252, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28822355

ABSTRACT

The Vitamin D Standardization Program (VDSP) coordinated an interlaboratory study to assess the comparability of measurements of total 25-hydroxyvitamin D [25(OH)D] in human serum, which is the primary marker of vitamin D status. A set of 50 individual donor samples were analyzed by 15 different laboratories representing national nutrition surveys, assay manufacturers, and clinical and/or research laboratories to provide results for total 25(OH)D using both immunoassays (IAs) and LC tandem MS (MS/MS). The results were evaluated relative to bias compared with the target values assigned based on a combination of measurements at Ghent University (Belgium) and the U.S. National Institute of Standards and Technology using reference measurement procedures for the determination of 25(OH)D2 and 25(OH)D3. CV and mean bias for each laboratory and assay platform were assessed and compared with previously established VDSP performance criteria, namely CV ≤ 10% and mean bias ≤ 5%. Nearly all LC-MS/MS results achieved VDSP criteria, whereas only 50% of IAs met the criterion for a ≤10% CV and only three of eight IAs achieved the ≤5% bias. These results establish a benchmark for the evaluation of 25(OH)D assay performance and standardization activities in the future.


Subject(s)
Blood Chemical Analysis/standards , Vitamin D/analogs & derivatives , Chromatography, Liquid/standards , Humans , Immunoassay/standards , Reference Standards , Tandem Mass Spectrometry/standards , Vitamin D/blood
15.
J AOAC Int ; 100(5): 1230-1233, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28766476

ABSTRACT

The Vitamin D Standardization Program (VDSP) has collaborated with numerous groups and agencies to assemble a set of tools, i.e., a reference measurement system, that can be used to establish the traceability of 25-hydroxyvitamin D [25(OH)D] assays to relevant reference measurement procedures and reference materials. This is done with the goal of verifying end-user laboratory performance using precise statistical criteria to determine whether a specific assay is standardized. The purpose of this paper was to outline a set of steps that routine clinical and research laboratories can use to standardize their 25(OH)D assays using these tools. These steps apply to laboratories using commercially developed immunoassay measurement systems as well as in-house assays, usually based on high HPLC or LC tandem MS measurement systems. The steps are (1) initial calibration, (2) initial assessment of accuracy and bias, (3) assessment of total percent CV and mean bias, (4) use of trueness controls, and (5) participation in accuracy-based performance testing and/or external quality assessment schemes. The goal of each laboratory assay is to have a total CV of ≤10% and mean bias of ≤5%. Rigorous and less rigorous but low-cost options for meeting these statistical criteria are provided. Research laboratories who infrequently measure 25(OH)D are advised to repeat steps 1-4 for every measurement cycle. For users of commercial immunoassays who have relatively little control over standardization, we present an option for using trueness controls to develop a master equation that can be used to standardize results to the reference methods.


Subject(s)
Blood Chemical Analysis/standards , Vitamin D/analogs & derivatives , Chromatography, High Pressure Liquid/standards , Chromatography, Liquid/standards , Humans , Immunoassay/standards , Reference Standards , Tandem Mass Spectrometry/standards , Vitamin D/blood
16.
J AOAC Int ; 100(5): 1253-1259, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28623654

ABSTRACT

Assay variability has been cited as an obstacle to establishing optimal vitamin D exposure. As part of the Vitamin D Standardization Program (VDSP) effort to standardize the measurement of total 25-hydroxyvitamin D [25(OH)D], the value assignment of total 25(OH)D in 50 single-donor serum samples was performed using two isotope-dilution LC with tandem MS methods. Both methods are recognized as reference measurement procedures (RMPs) by the Joint Committee for Traceability in Laboratory Medicine. These samples and their assigned values serve as the foundation for several aspects of the VDSP. To our knowledge, this is the first time that two RMPs have been used to assign 25(OH)D values to such a large number of serum samples.


Subject(s)
Blood Chemical Analysis/standards , Vitamin D/analogs & derivatives , Chromatography, Liquid/standards , Humans , Reference Standards , Tandem Mass Spectrometry/standards , Vitamin D/blood
17.
Anal Chem ; 89(9): 4907-4913, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28375002

ABSTRACT

The National Institute of Standards and Technology (NIST) has developed Standard Reference Material (SRM) 972a Vitamin D Metabolites in Frozen Human Serum as a replacement for SRM 972, which is no longer available. SRM 972a was developed in collaboration with the National Institutes of Health's Office of Dietary Supplements. In contrast to the previous reference material, three of the four levels of SRM 972a are composed of unmodified human serum. This SRM has certified and reference values for the following 25-hydroxyvitamin D [25(OH)D] species: 25(OH)D2, 25(OH)D3, and 3-epi-25(OH)D3. The value assignment and certification process included three isotope-dilution mass spectrometry approaches, with measurements performed at NIST and at the Centers for Disease Control and Prevention (CDC). The value assignment methods employed have been modified from those utilized for the previous SRM, and all three approaches now incorporate chromatographic resolution of the stereoisomers, 25(OH)D3 and 3-epi-25(OH)D3.


Subject(s)
25-Hydroxyvitamin D 2/blood , Calcifediol/blood , Chromatography, Liquid/standards , Mass Spectrometry/standards , 25-Hydroxyvitamin D 2/standards , Calcifediol/chemistry , Calcifediol/standards , Humans , Reference Standards , Reference Values , Stereoisomerism , United States , United States Government Agencies
18.
Sci Rep ; 7: 42497, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186164

ABSTRACT

Using mAbs as therapeutic molecules is complicated by the propensity of mAbs to aggregate at elevated concentrations, which can lead to a variety of adverse events in treatment. Here, we describe a proof-of-concept for new methodology to detect and quantify mAb aggregation. Assay development included using an aggregated mAb as bait for screening of phage display peptide library and identifying those peptides with random sequence which can recognize mAb aggregates. Once identified, the selected peptides can be used for developing quantitative methods to assess mAb aggregation. Results indicate that a peptide binding method coupled with mass spectrometric detection of bound peptide can quantify mAb aggregation and potentially be useful for monitoring aggregation propensity of therapeutic protein candidates.


Subject(s)
Antibodies, Monoclonal/chemistry , Protein Aggregates , Antibodies, Monoclonal/metabolism , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Molecular Probes , Peptides/chemistry , Peptides/metabolism , Protein Binding , Tandem Mass Spectrometry
19.
J Am Soc Mass Spectrom ; 28(4): 733-738, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28127680

ABSTRACT

A method to discover and correct errors in mass spectral libraries is described. Comparing across a set of highly curated reference libraries compounds that have the same chemical structure quickly identifies entries that are outliers. In cases where three or more entries for the same compound are compared, the outlier as determined by visual inspection was almost always found to contain the error. These errors were either in the spectrum itself or in the chemical descriptors that accompanied it. The method is demonstrated on finding errors in compounds of forensic interest in the NIST/EPA/NIH Mass Spectral Library. The target list of compounds checked was the Scientific Working Group for the Analysis of Seized Drugs (SWGDRUG) mass spectral library. Some examples of errors found are described. A checklist of errors that curators should look for when performing inter-library comparisons is provided. Graphical Abstract ᅟ.

20.
Anal Bioanal Chem ; 408(29): 8325-8332, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27695963

ABSTRACT

Quantifying the amount of antibody on magnetic particles is a fundamental, but often overlooked step in the development of magnetic separation-based immunoaffinity enrichment procedures. In this work, a targeted mass spectrometry (MS)-based method was developed to directly measure the amount of antibody covalently bound to magnetic particles. Isotope-dilution liquid chromatography-tandem MS (ID-LC-MS/MS) has been extensively employed as a gold-standard method for protein quantification. Here, we demonstrate the utility of this methodology for evaluating different antibody coupling processes to magnetic particles of different dimensions. Synthesized magnetic nanoparticles and pre-functionalized microparticles activated with glutaraldehyde or epoxy surface groups were used as solid supports for antibody conjugation. The key steps in this quantitative approach involved an antibody-magnetic particle coupling process, a wash step to remove unreacted antibody, followed by an enzymatic digestion step (in situ with the magnetic particles) to release tryptic antibody peptides. Our results demonstrate that nanoparticles more efficiently bind antibody when compared to microparticles, which was expected due to the larger surface area per unit mass of the nanoparticles compared to the same mass of microparticles. This quantitative method is shown to be capable of accurately and directly measuring antibody bound to magnetic particles and is independent of the conjugation method or type of magnetic particle. Graphical Abstract Schematic illustration of the isotope-dilution mass spectrometry-based workflow to directly measure antibody bound to magnetic particles (MP).


Subject(s)
Antibodies, Immobilized/analysis , Chromatography, Affinity/methods , Magnetite Nanoparticles/chemistry , Tandem Mass Spectrometry/methods , Antibodies, Immobilized/immunology , Biomarkers/analysis , Epoxy Compounds/chemistry , Particle Size , Peptides/analysis , Silicon Dioxide/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...