Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Front Nutr ; 11: 1376098, 2024.
Article in English | MEDLINE | ID: mdl-38487629

ABSTRACT

There is a substantial body of clinical evidence supporting the beneficial effects of lower-carbohydrate dietary patterns on multiple established risk factors associated with insulin resistance and cardiovascular diseases in adult populations. Nutrition and health researchers, clinical practitioners, and stakeholders gathered for, "The Scientific Forum on Nutrition, Wellness, and Lower-Carbohydrate Diets: An Evidence- and Equity-Based Approach to Dietary Guidance" to discuss the evidence base around lower-carbohydrate diets, health outcomes, and dietary guidance. Consensus statements were agreed upon to identify current areas of scientific agreement and spotlight gaps in research, education, and practice to help define and prioritize future pathways. Given the evidence base and considering that most American adults are living with at least one nutrition-related chronic disease, there was consensus that including a lower-carbohydrate dietary pattern as one part of the Dietary Guidelines for Americans could help promote health equity among the general population.

2.
Front Public Health ; 10: 897099, 2022.
Article in English | MEDLINE | ID: mdl-35784202

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) pandemic public health measures such as stay-at-home and mandatory work-from-home orders have been associated with obesogenic lifestyle changes, increased risk of weight gain, and their metabolic sequelae. We sought to assess the impact of this pandemic on weight loss from a telemedicine-delivered very-low-carbohydrate intervention targeting nutritional ketosis (NKI). Methods: A total of 746 patients with a BMI ≥25kg/m2, enrolled between January and March 2020 and treated for at least 1 year with the NKI, were classified as pandemic cohort (PC). A separate cohort of 699 patients who received 1 year of the NKI in the preceding years, enrolled between January and March 2018, were identified as pre-pandemic cohort (Pre-PC). Demographic and clinical data were obtained from medical records to compare the cohorts and assess the outcomes. Using propensity score matching (PSM), balanced and matched groups of 407 patients in the Pre-PC and 407 patients in the PC were generated. Longitudinal change in absolute weight and percentage weight change from baseline to 1 year were assessed. Results: Weight significantly decreased in both PC and Pre-PC at 3, 6, 9, and 12 months. The weight loss trajectory was similar in both PC and Pre-PC with no significant weight differences between the two cohorts at 3, 6, 9, and 12 months. On an average, the PC lost 7.5% body weight while the Pre-PC lost 7.9% over 1 year, and the percent weight loss did not differ between the two cohorts (p = 0.50). Conclusion: A very-low-carbohydrate telemedicine intervention delivered comparable and medically significant weight loss independent of pandemic stress and lifestyle limitations.


Subject(s)
COVID-19 , Telemedicine , COVID-19/epidemiology , Carbohydrates , Humans , Obesity/epidemiology , Obesity/therapy , Pandemics , Propensity Score , Weight Loss
3.
BMC Musculoskelet Disord ; 23(1): 297, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35351093

ABSTRACT

BACKGROUND: In a previous study, we assessed a novel, remotely monitored carbohydrate restricted diet regimen including nutritional ketosis in patients with type 2 diabetes and reported significant improvements in weight, glycemic control, abdominal fat and inflammation from baseline to 2 years. Knee outcome measures were collected as a secondary outcome in the trial. This study aims to assess the effect of this intervention on knee functional scores and to identify if changes in weight, central abdominal fat (CAF), glycemic status and high sensitivity C-reactive protein (hsCRP) were associated with its improvement. METHODS: This prospective analysis included continuous care intervention (CCI, n = 173) and usual care (UC, n = 69) trial participants with type 2 diabetes that reported knee pain at baseline. Knee outcome measures included the Knee injury and Osteoarthritis Outcome Score (KOOS) pain, symptoms, activities of daily living (ADL), sports and recreation function, and knee-related quality of life subscales, and total KOOS score were assessed from baseline to 2 years. Missing data at each time point were replaced with multiple imputation under the assumption of missing at random. To assess if the primary analysis of the knee scores changed under plausible missing not at random assumptions, sensitivity analysis was also performed using pattern mixture models. In CCI, we also assessed factors associated with the improvement of knee scores. RESULTS: In the primary analysis, CCI participants demonstrated a statistically significant improvement in total KOOS and all KOOS individual subscale scores at 1 year and maintained through 2 years as opposed to UC patients who showed no significant changes from baseline to 2 years. The significant improvement in total KOOS and its individual subscale scores from baseline to 2 years remained relatively stable in CCI in the sensitivity analysis under different missing not at random scenarios confirming the robustness of the findings from the primary analysis. Approximately 46% of the CCI participants met the 10 points minimal clinically important change at 2 years. A reduction in CAF was associated with improvement in total KOOS and KOOS ADL, while a decrease in hsCRP was associated with improvement in KOOS symptoms scores. CONCLUSION: A very low carbohydrate intervention including nutritional ketosis resulted in significant improvements in knee pain and function among patients with T2D. The improvements in knee function were likely secondary to a reduction in central adiposity and inflammation. Future research on the applicability of this intervention in radiographically confirmed OA patients is important. TRIAL REGISTRATION: Clinical trial registration: NCT02519309 (10/08/2015).


Subject(s)
Diabetes Mellitus, Type 2 , Osteoarthritis, Knee , Activities of Daily Living , Carbohydrates , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Humans , Osteoarthritis, Knee/therapy , Quality of Life
4.
J Behav Med ; 45(3): 416-427, 2022 06.
Article in English | MEDLINE | ID: mdl-35084637

ABSTRACT

Depressive symptoms are prevalent among people with type 2 diabetes (T2D) and, even at low severity levels, are associated with worse diabetes outcomes. Carbohydrate restriction is an effective treatment for T2D but its long-term impacts on depressive symptoms are unclear. In the current study we explored changes in depressive symptoms over 2 years among 262 primarily non-depressed T2D patients participating in a continuous remote care intervention emphasizing carbohydrate restriction. Subclinical depressive symptoms decreased over the first 10 weeks and reductions were maintained out to 2 years. Increased frequency of blood ketone levels indicative of adherence to low carbohydrate eating predicted decreases in depressive symptoms. Concerns have been raised with recommending restrictive diets due to potential negative impacts on quality-of-life factors such as mood; however, results of the current study support positive rather than negative long-term impacts of closely monitored carbohydrate restriction on depressive symptoms.


Subject(s)
Diabetes Mellitus, Type 2 , Carbohydrates , Depression/complications , Depression/therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Humans , Quality of Life , Treatment Outcome
5.
Nutrients ; 13(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34684300

ABSTRACT

The decades-long dietary experiment embodied in the Dietary Guidelines for Americans (DGA) focused on limiting fat, especially saturated fat, and higher carbohydrate intake has coincided with rapidly escalating epidemics of obesity and type 2 diabetes (T2D) that are contributing to the progression of cardiovascular disease (CVD) and other diet-related chronic diseases. Moreover, the lack of flexibility in the DGA as it pertains to low carbohydrate approaches does not align with the contemporary trend toward precision nutrition. We argue that personalizing the level of dietary carbohydrate should be a high priority based on evidence that Americans have a wide spectrum of metabolic variability in their tolerance to high carbohydrate loads. Obesity, metabolic syndrome, and T2D are conditions strongly associated with insulin resistance, a condition exacerbated by increased dietary carbohydrate and improved by restricting carbohydrate. Low-carbohydrate diets are grounded across the time-span of human evolution, have well-established biochemical principles, and are now supported by multiple clinical trials in humans that demonstrate consistent improvements in multiple established risk factors associated with insulin resistance and cardiovascular disease. The American Diabetes Association (ADA) recently recognized a low carbohydrate eating pattern as an effective approach for patients with diabetes. Despite this evidence base, low-carbohydrate diets are not reflected in the DGA. As the DGA Dietary Patterns have not been demonstrated to be universally effective in addressing the needs of many Americans and recognizing the lack of widely available treatments for obesity, metabolic syndrome, and T2D that are safe, effective, and sustainable, the argument for an alternative, low-carbohydrate Dietary Pattern is all the more compelling.


Subject(s)
Diet, Carbohydrate-Restricted , Nutrition Policy , Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/epidemiology , Diet, Ketogenic , Humans , Insulin Resistance , Obesity/epidemiology , United States
6.
Nutrients ; 13(6)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198888

ABSTRACT

BACKGROUND: Foods rich in saturated fatty acids (SFAs) have been discouraged by virtue of their cholesterol-raising potential, but this effect is modulated by the food source and background level of carbohydrate. OBJECTIVE: We aimed to compare the consumption of palm stearin (PS) versus butter on circulating cholesterol responses in the setting of both a low-carbohydrate/high-fat (LC/HF) and high-carbohydrate/low-fat (HC/LF) diet in healthy subjects. We also explored effects on plasma lipoprotein particle distribution and fatty acid composition. METHODS: We performed a randomized, controlled-feeding, cross-over study that compared a PS- versus a Butter-based diet in a group of normocholesterolemic, non-obese adults. A controlled canola oil-based 'Run-In' diet preceded the experimental PS and Butter diets. All diets were eucaloric, provided for 3-weeks, and had the same macronutrient distribution but varied in primary fat source (40% of the total fat). The same Run-In and cross-over experiments were done in two separate groups who self-selected to either a LC/HF (n = 12) or a HC/LF (n = 12) diet track. The primary outcomes were low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein (HDL)-C, triglycerides, and LDL particle distribution. RESULTS: Compared to PS, Butter resulted in higher LDL-C in both the LC/HF (13.4%, p = 0.003) and HC/LF (10.8%, p = 0.002) groups, which was primarily attributed to large LDL I and LDL IIa particles. There were no differences between PS and Butter in HDL-C, triglycerides, or small LDL particles. Oxidized LDL was lower after PS than Butter in LC/HF (p = 0.011), but not the HC/LF group. CONCLUSIONS: These results demonstrate that Butter raises LDL-C relative to PS in healthy normocholesterolemic adults regardless of background variations in carbohydrate and fat, an effect primarily attributed to larger cholesterol-rich LDL particles.


Subject(s)
Butter , Cholesterol/blood , Diet/methods , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Palm Oil/administration & dosage , Adult , Aged , Cross-Over Studies , Diet/adverse effects , Diet, Carbohydrate Loading/adverse effects , Diet, Carbohydrate Loading/methods , Diet, Carbohydrate-Restricted/adverse effects , Diet, Carbohydrate-Restricted/methods , Diet, Fat-Restricted/adverse effects , Diet, Fat-Restricted/methods , Diet, High-Fat/adverse effects , Diet, High-Fat/methods , Female , Healthy Volunteers , Humans , Lipids/blood , Male , Middle Aged , Palm Oil/chemistry , Young Adult
7.
Nutrients ; 13(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652715

ABSTRACT

The purpose of this study is to assess the effects of an alternative approach to type 2 diabetes prevention. Ninety-six patients with prediabetes (age 52 (10) years; 80% female; BMI 39.2 (7.1) kg/m2) received a continuous remote care intervention focused on reducing hyperglycemia through carbohydrate restricted nutrition therapy for two years in a single arm, prospective, longitudinal pilot study. Two-year retention was 75% (72 of 96 participants). Fifty-one percent of participants (49 of 96) met carbohydrate restriction goals as assessed by blood beta-hydroxybutyrate concentrations for more than one-third of reported measurements. Estimated cumulative incidence of normoglycemia (HbA1c <5.7% without medication) and type 2 diabetes (HbA1c ≥6.5% or <6.5% with medication other than metformin) at two years were 52.3% and 3%, respectively. Prevalence of metabolic syndrome, class II or greater obesity, and suspected hepatic steatosis significantly decreased at two years. These results demonstrate the potential utility of an alternate approach to type 2 diabetes prevention, carbohydrate restricted nutrition therapy delivered through a continuous remote care model, for normalization of glycemia and improvement in related comorbidities.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Diet, Carbohydrate-Restricted/methods , Hyperglycemia/diet therapy , Prediabetic State/diet therapy , Telemedicine/methods , 3-Hydroxybutyric Acid/blood , Adult , Aged , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/etiology , Fatty Liver/epidemiology , Fatty Liver/etiology , Fatty Liver/prevention & control , Female , Glycated Hemoglobin/metabolism , Humans , Hyperglycemia/blood , Hyperglycemia/complications , Longitudinal Studies , Male , Metabolic Syndrome/blood , Metabolic Syndrome/complications , Metabolic Syndrome/diet therapy , Metabolic Syndrome/etiology , Middle Aged , Obesity/epidemiology , Obesity/etiology , Obesity/prevention & control , Patient Education as Topic , Pilot Projects , Prediabetic State/blood , Prediabetic State/complications , Prevalence , Prospective Studies , Treatment Outcome , Young Adult
9.
Cardiovasc Diabetol ; 19(1): 208, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33292205

ABSTRACT

BACKGROUND: We have previously reported that in patients with type 2 diabetes (T2D) consumption of a very low carbohydrate diet capable of inducing nutritional ketosis over 2 years (continuous care intervention, CCI) resulted in improved body weight, glycemic control, and multiple risk factors for cardiovascular disease (CVD) with the exception of an increase in low density lipoprotein cholesterol (LDL-C). In the present study, we report the impact of this intervention on markers of risk for atherosclerotic cardiovascular disease (CVD), with a focus on lipoprotein subfraction particle concentrations as well as carotid-artery intima-media thickness (CIMT). METHODS: Analyses were performed in patients with T2D who completed 2 years of this study (CCI; n = 194; usual care (UC): n = 68). Lipoprotein subfraction particle concentrations were measured by ion mobility at baseline, 1, and 2 years and CIMT was measured at baseline and 2 years. Principal component analysis (PCA) was used to assess changes in independent clusters of lipoprotein particles. RESULTS: At 2 years, CCI resulted in a 23% decrease of small LDL IIIb and a 29% increase of large LDL I with no change in total LDL particle concentration or ApoB. The change in proportion of smaller and larger LDL was reflected by reversal of the small LDL subclass phenotype B in a high proportion of CCI participants (48.1%) and a shift in the principal component (PC) representing the atherogenic lipoprotein phenotype characteristic of T2D from a major to a secondary component of the total variance. The increase in LDL-C in the CCI group was mainly attributed to larger cholesterol-enriched LDL particles. CIMT showed no change in either the CCI or UC group. CONCLUSION: Consumption of a very low carbohydrate diet with nutritional ketosis for 2 years in patients with type 2 diabetes lowered levels of small LDL particles that are commonly increased in diabetic dyslipidemia and are a marker for heightened CVD risk. A corresponding increase in concentrations of larger LDL particles was responsible for higher levels of plasma LDL-C. The lack of increase in total LDL particles, ApoB, and in progression of CIMT, provide supporting evidence that this dietary intervention did not adversely affect risk of CVD.


Subject(s)
Carotid Artery Diseases/prevention & control , Diabetes Mellitus, Type 2/diet therapy , Diet, Carbohydrate-Restricted , Dyslipidemias/prevention & control , Ketosis , Nutritional Status , Biomarkers/blood , Carotid Artery Diseases/blood , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/etiology , Carotid Intima-Media Thickness , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diet, Carbohydrate-Restricted/adverse effects , Dyslipidemias/blood , Dyslipidemias/diagnosis , Dyslipidemias/etiology , Heart Disease Risk Factors , Humans , Lipoproteins, LDL/blood , Nutritive Value , Risk Assessment , Time Factors , Treatment Outcome
10.
JCI Insight ; 4(12)2019 06 20.
Article in English | MEDLINE | ID: mdl-31217353

ABSTRACT

BACKGROUNDMetabolic syndrome (MetS) is highly correlated with obesity and cardiovascular risk, but the importance of dietary carbohydrate independent of weight loss in MetS treatment remains controversial. Here, we test the theory that dietary carbohydrate intolerance (i.e., the inability to process carbohydrate in a healthy manner) rather than obesity per se is a fundamental feature of MetS.METHODSIndividuals who were obese with a diagnosis of MetS were fed three 4-week weight-maintenance diets that were low, moderate, and high in carbohydrate. Protein was constant and fat was exchanged isocalorically for carbohydrate across all diets.RESULTSDespite maintaining body mass, low-carbohydrate (LC) intake enhanced fat oxidation and was more effective in reversing MetS, especially high triglycerides, low HDL-C, and the small LDL subclass phenotype. Carbohydrate restriction also improved abnormal fatty acid composition, an emerging MetS feature. Despite containing 2.5 times more saturated fat than the high-carbohydrate diet, an LC diet decreased plasma total saturated fat and palmitoleate and increased arachidonate.CONCLUSIONConsistent with the perspective that MetS is a pathologic state that manifests as dietary carbohydrate intolerance, these results show that compared with eucaloric high-carbohydrate intake, LC/high-fat diets benefit MetS independent of whole-body or fat mass.TRIAL REGISTRATIONClinicalTrials.gov Identifier: NCT02918422.FUNDINGDairy Management Inc. and the Dutch Dairy Association.


Subject(s)
Dietary Carbohydrates/metabolism , Metabolic Syndrome/metabolism , Obesity/metabolism , Weight Loss , 8,11,14-Eicosatrienoic Acid/blood , Adult , Aged , Arachidonic Acid/blood , Cholesterol, LDL/metabolism , Cross-Over Studies , Diet , Female , Humans , Male , Middle Aged
11.
Article in English | MEDLINE | ID: mdl-31231311

ABSTRACT

Purpose: Studies on long-term sustainability of low-carbohydrate approaches to treat diabetes are limited. We previously reported the effectiveness of a novel digitally-monitored continuous care intervention (CCI) including nutritional ketosis in improving weight, glycemic outcomes, lipid, and liver marker changes at 1 year. Here, we assess the effects of the CCI at 2 years. Materials and methods: An open label, non-randomized, controlled study with 262 and 87 participants with T2D were enrolled in the CCI and usual care (UC) groups, respectively. Primary outcomes were retention, glycemic control, and weight changes at 2 years. Secondary outcomes included changes in body composition, liver, cardiovascular, kidney, thyroid and inflammatory markers, diabetes medication use and disease status. Results: Reductions from baseline to 2 years in the CCI group resulting from intent-to-treat analyses included: HbA1c, fasting glucose, fasting insulin, weight, systolic blood pressure, diastolic blood pressure, triglycerides, and liver alanine transaminase, and HDL-C increased. Spine bone mineral density in the CCI group was unchanged. Use of any glycemic control medication (excluding metformin) among CCI participants declined (from 55.7 to 26.8%) including insulin (-62%) and sulfonylureas (-100%). The UC group had no changes in these parameters (except uric acid and anion gap) or diabetes medication use. There was also resolution of diabetes (reversal, 53.5%; remission, 17.6%) in the CCI group but not in UC. All the reported improvements had p < 0.00012. Conclusion: The CCI group sustained long-term beneficial effects on multiple clinical markers of diabetes and cardiometabolic health at 2 years while utilizing less medication. The intervention was also effective in the resolution of diabetes and visceral obesity with no adverse effect on bone health. Clinical Trial Registration: Clinicaltrials.gov NCT02519309.

12.
Sleep Med ; 55: 92-99, 2019 03.
Article in English | MEDLINE | ID: mdl-30772699

ABSTRACT

OBJECTIVE: Sleep disruption is frequently associated with type 2 diabetes (T2D) and hyperglycemia. We recently reported the effectiveness of a continuous care intervention (CCI) emphasizing nutritional ketosis for improving HbA1c, body weight and cardiovascular risk factors in T2D patients. The present study assessed the effect of this CCI approach on sleep quality using a subjective patient-reported sleep questionnaire. METHODS: A non-randomized, controlled longitudinal study; 262 T2D and 116 prediabetes patients enrolled in the CCI and 87 separately recruited T2D patients continued usual care (UC) treatment. Patients completed the Pittsburgh Sleep Quality Index (PSQI) questionnaire. A PSQI score of >5 (scale 0 to 21) was used to identify poor sleepers. RESULTS: Global sleep quality improved in the CCI T2D (p < 0.001) and prediabetes (p < 0.001) patients after one year of intervention. Subjective sleep quality (component 1), sleep disturbance (component 5) and daytime dysfunction (component 7), also showed improvements in the CCI T2D (p < 0.01 for sleep quality and sleep disturbance; and p < 0.001 for daytime dysfunction) and prediabetes patients (p < 0.001 for all three components); compared to the UC T2D group after one year. The proportion of patients with poor sleep quality was significantly reduced after one year of CCI (T2D; from 68.3% at baseline to 56.5% at one year, p = 0.001 and prediabetes; from 77.9% at baseline to 48.7% at one year, p < 0.001). CONCLUSION: This study demonstrates improved sleep quality as assessed by PSQI in patients with T2D and prediabetes undergoing CCI including nutritional ketosis but not in T2D patients receiving UC. The dietary intervention benefited both sleep quality and the severity of T2D symptoms suggesting that nutritional ketosis improves overall health via multiple mechanisms.


Subject(s)
Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/diagnosis , Diet, Ketogenic/methods , Prediabetic State/diet therapy , Prediabetic State/diagnosis , Sleep Wake Disorders/diet therapy , Sleep Wake Disorders/diagnosis , Adult , Aged , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Humans , Longitudinal Studies , Middle Aged , Prediabetic State/metabolism , Risk Factors , Sleep/physiology , Sleep Wake Disorders/metabolism , Young Adult
13.
BMJ Open ; 9(2): e023597, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30803948

ABSTRACT

OBJECTIVE: One year of comprehensive continuous care intervention (CCI) through nutritional ketosis improves glycosylated haemoglobin(HbA1c), body weight and liver enzymes among patients with type 2 diabetes (T2D). Here, we report the effect of the CCI on surrogate scores of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis. METHODS: This was a non-randomised longitudinal study, including adults with T2D who were self-enrolled to the CCI (n=262) or to receive usual care (UC, n=87) during 1 year. An NAFLD liver fat score (N-LFS) >-0.640 defined the presence of fatty liver. An NAFLD fibrosis score (NFS) of >0.675 identified subjects with advanced fibrosis. Changes in N-LFS and NFS at 1 year were the main endpoints. RESULTS: At baseline, NAFLD was present in 95% of patients in the CCI and 90% of patients in the UC. At 1 year, weight loss of ≥5% was achieved in 79% of patients in the CCI versus 19% of patients in UC (p<0.001). N-LFS mean score was reduced in the CCI group (-1.95±0.22, p<0.001), whereas it was not changed in the UC (0.47±0.41, p=0.26) (CCI vs UC, p<0.001). NFS was reduced in the CCI group (-0.65±0.06, p<0.001) compared with UC (0.26±0.11, p=0.02) (p<0.001 between two groups). In the CCI group, the percentage of individuals with a low probability of advanced fibrosis increased from 18% at baseline to 33% at 1 year (p<0.001). CONCLUSIONS: One year of a digitally supported CCI significantly improved surrogates of NAFLD and advanced fibrosis in patients with T2D. TRIAL REGISTRATION NUMBER: NCT02519309; Results.


Subject(s)
Diabetes Mellitus, Type 2/complications , Liver Cirrhosis/blood , Non-alcoholic Fatty Liver Disease/blood , Biomarkers/blood , Diabetes Mellitus, Type 2/diet therapy , Diet, High-Protein Low-Carbohydrate , Female , Humans , Liver Cirrhosis/diagnosis , Longitudinal Studies , Male , Middle Aged , Non-Randomized Controlled Trials as Topic , Non-alcoholic Fatty Liver Disease/diagnosis , Severity of Illness Index , Young Adult
14.
BMJ Open Sport Exerc Med ; 4(1): e000429, 2018.
Article in English | MEDLINE | ID: mdl-30305928

ABSTRACT

OBJECTIVE: A growing number of ultra-endurance athletes have switched to a very low-carbohydrate/high-fat eating pattern. We compared markers of cholesterol and the lipoprotein profile in a group of elite ultra-runners consuming a high-carbohydrate (HC) or low-carbohydrate (LC) diet. METHODS: Fasting blood was obtained from competitive male ultra-endurance runners habitually consuming a very low-carbohydrate (LC; n=10) or high-carbohydrate (HC; n=10) diet to determine blood cholesterol profile, lipoprotein particle distribution and sterol biomarkers of cholesterol balance. RESULTS: Plasma total cholesterol, low-density lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) cholesterol were all significantly greater (p<0.000) in the LC group (65%, 83% and 60%, respectively). There were also significant differences in lipoprotein particle distribution as evidenced by a greater size and concentration of large HDL and LDL particles, and total LDL particle concentration was significantly greater in the LC group, but they had significantly fewer small LDL particles. CONCLUSION: Ultra-endurance athletes habitually consuming a very low-carbohydrate/high-fat diet for over a year showed unique cholesterol profiles characterised by consistently higher plasma LDL-C and HDL-C, less small LDL particles, and lipoprotein profiles consistent with higher insulin sensitivity. There may be a functional purpose to the expansion of the circulating cholesterol pool to meet the heightened demand for lipid transport in highly trained, keto-adapted athletes.

15.
Cardiovasc Diabetol ; 17(1): 56, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29712560

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) is a leading cause of death among adults with type 2 diabetes mellitus (T2D). We recently reported that glycemic control in patients with T2D can be significantly improved through a continuous care intervention (CCI) including nutritional ketosis. The purpose of this study was to examine CVD risk factors in this cohort. METHODS: We investigated CVD risk factors in patients with T2D who participated in a 1 year open label, non-randomized, controlled study. The CCI group (n = 262) received treatment from a health coach and medical provider. A usual care (UC) group (n = 87) was independently recruited to track customary T2D progression. Circulating biomarkers of cholesterol metabolism and inflammation, blood pressure (BP), carotid intima media thickness (cIMT), multi-factorial risk scores and medication use were examined. A significance level of P < 0.0019 ensured two-tailed significance at the 5% level when Bonferroni adjusted for multiple comparisons. RESULTS: The CCI group consisted of 262 participants (baseline mean (SD): age 54 (8) year, BMI 40.4 (8.8) kg m-2). Intention-to-treat analysis (% change) revealed the following at 1-year: total LDL-particles (LDL-P) (- 4.9%, P = 0.02), small LDL-P (- 20.8%, P = 1.2 × 10-12), LDL-P size (+ 1.1%, P = 6.0 × 10-10), ApoB (- 1.6%, P = 0.37), ApoA1 (+ 9.8%, P < 10-16), ApoB/ApoA1 ratio (- 9.5%, P = 1.9 × 10-7), triglyceride/HDL-C ratio (- 29.1%, P < 10-16), large VLDL-P (- 38.9%, P = 4.2 × 10-15), and LDL-C (+ 9.9%, P = 4.9 × 10-5). Additional effects were reductions in blood pressure, high sensitivity C-reactive protein, and white blood cell count (all P < 1 × 10-7) while cIMT was unchanged. The 10-year atherosclerotic cardiovascular disease (ASCVD) risk score decreased - 11.9% (P = 4.9 × 10-5). Antihypertensive medication use was discontinued in 11.4% of CCI participants (P = 5.3 × 10-5). The UC group of 87 participants [baseline mean (SD): age 52 (10) year, BMI 36.7 (7.2) kg m-2] showed no significant changes. After adjusting for baseline differences when comparing CCI and UC groups, significant improvements for the CCI group included small LDL-P, ApoA1, triglyceride/HDL-C ratio, HDL-C, hsCRP, and LP-IR score in addition to other biomarkers that were previously reported. The CCI group showed a greater rise in LDL-C. CONCLUSIONS: A continuous care treatment including nutritional ketosis in patients with T2D improved most biomarkers of CVD risk after 1 year. The increase in LDL-cholesterol appeared limited to the large LDL subfraction. LDL particle size increased, total LDL-P and ApoB were unchanged, and inflammation and blood pressure decreased. Trial registration Clinicaltrials.gov: NCT02519309. Registered 10 August 2015.


Subject(s)
Cardiovascular Diseases/prevention & control , Delivery of Health Care, Integrated , Diabetes Mellitus, Type 2/diet therapy , Diabetic Ketoacidosis/diet therapy , Diet, Carbohydrate-Restricted , Diet, Diabetic , Nutritional Status , 3-Hydroxybutyric Acid/blood , Adult , Biomarkers/blood , Blood Glucose/metabolism , Blood Pressure , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Combined Modality Therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/physiopathology , Diabetic Ketoacidosis/blood , Diabetic Ketoacidosis/diagnosis , Diabetic Ketoacidosis/physiopathology , Diet, Carbohydrate-Restricted/adverse effects , Diet, Diabetic/adverse effects , Female , Humans , Hypoglycemic Agents/therapeutic use , Indiana , Inflammation Mediators/blood , Lipids/blood , Male , Middle Aged , Prospective Studies , Risk Factors , Time Factors , Treatment Outcome
17.
Diabetes Ther ; 9(2): 583-612, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29417495

ABSTRACT

INTRODUCTION: Carbohydrate restriction markedly improves glycemic control in patients with type 2 diabetes (T2D) but necessitates prompt medication changes. Therefore, we assessed the effectiveness and safety of a novel care model providing continuous remote care with medication management based on biometric feedback combined with the metabolic approach of nutritional ketosis for T2D management. METHODS: We conducted an open-label, non-randomized, controlled, before-and-after 1-year study of this continuous care intervention (CCI) and usual care (UC). Primary outcomes were glycosylated hemoglobin (HbA1c), weight, and medication use. Secondary outcomes included fasting serum glucose and insulin, HOMA-IR, blood lipids and lipoproteins, liver and kidney function markers, and high-sensitivity C-reactive protein (hsCRP). RESULTS: 349 adults with T2D enrolled: CCI: n = 262 [mean (SD); 54 (8) years, 116.5 (25.9) kg, 40.4 (8.8) kg m2, 92% obese, 88% prescribed T2D medication]; UC: n = 87 (52 (10) years, 105.6 (22.15) kg, 36.72 (7.26) kg m2, 82% obese, 87% prescribed T2D medication]. 218 participants (83%) remained enrolled in the CCI at 1 year. Intention-to-treat analysis of the CCI (mean ± SE) revealed HbA1c declined from 59.6 ± 1.0 to 45.2 ± 0.8 mmol mol-1 (7.6 ± 0.09% to 6.3 ± 0.07%, P < 1.0 × 10-16), weight declined 13.8 ± 0.71 kg (P < 1.0 × 10-16), and T2D medication prescription other than metformin declined from 56.9 ± 3.1% to 29.7 ± 3.0% (P < 1.0 × 10-16). Insulin therapy was reduced or eliminated in 94% of users; sulfonylureas were entirely eliminated in the CCI. No adverse events were attributed to the CCI. Additional CCI 1-year effects were HOMA-IR - 55% (P = 3.2 × 10-5), hsCRP - 39% (P < 1.0 × 10-16), triglycerides - 24% (P < 1.0 × 10-16), HDL-cholesterol + 18% (P < 1.0 × 10-16), and LDL-cholesterol + 10% (P = 5.1 × 10-5); serum creatinine and liver enzymes (ALT, AST, and ALP) declined (P ≤ 0.0001), and apolipoprotein B was unchanged (P = 0.37). UC participants had no significant changes in biomarkers or T2D medication prescription at 1 year. CONCLUSIONS: These results demonstrate that a novel metabolic and continuous remote care model can support adults with T2D to safely improve HbA1c, weight, and other biomarkers while reducing diabetes medication use. CLINICALTRIALS. GOV IDENTIFIER: NCT02519309. FUNDING: Virta Health Corp.


Treatments for type 2 diabetes (T2D) have improved, yet T2D and being overweight are still significant public health concerns. Blood sugar in patients with T2D can improve quickly when patients eat significantly fewer dietary carbohydrates. However, this demands careful medicine management by doctors, and patients need support and frequent contact with health providers to sustain this way of living. The purpose of this study was to evaluate if a new care model with very low dietary carbohydrate intake and continuous supervision by a health coach and doctor could safely lower HbA1c, weight and need for medicines after 1 year in adults with T2D. 262 adults with T2D volunteered to participate in this continuous care intervention (CCI) along with 87 adults with T2D receiving usual care (UC) from their doctors and diabetes education program. After 1 year, patients in the CCI, on average, lowered HbA1c from 7.6 to 6.3%, lost 12% of their body weight, and reduced diabetes medicine use. 94% of patients who were prescribed insulin reduced or stopped their insulin use, and sulfonylureas were eliminated in all patients. Participants in the UC group had no changes to HbA1c, weight or diabetes medicine use over the year. These changes in CCI participants happened safely while dyslipidemia and markers of inflammation and liver function improved. This suggests the novel care model studied here using dietary carbohydrate restriction and continuous remote care can safely support adults with T2D to lower HbA1c, weight, and medicine use.

18.
Nutr Diabetes ; 7(12): 304, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269731

ABSTRACT

Dietary treatment is important in management of type 2 diabetes or prediabetes, but uncertainty exists about the optimal diet. We randomized adults (n = 34) with glycated hemoglobin (HbA1c) > 6.0% and elevated body weight (BMI > 25) to a very low-carbohydrate ketogenic (LCK) diet (n = 16) or a moderate-carbohydrate, calorie-restricted, low-fat (MCCR) diet (n = 18). All participants were encouraged to be physically active, get sufficient sleep, and practice behavioral adherence strategies based on positive affect and mindful eating. At 12 months, participants in the LCK group had greater reductions in HbA1c levels (estimated marginal mean (EMM) at baseline = 6.6%, at 12 mos = 6.1%) than participants in MCCR group (EMM at baseline = 6.9%, at 12 mos = 6.7%), p = .007. Participants in the LCK group lost more weight (EMM at baseline = 99.9 kg, at 12 mos = 92.0 kg) than participants in the MCCR group (EMM at baseline = 97.5 kg, at 12 mos = 95.8 kg), p < .001. The LCK participants experienced larger reductions in diabetes-related medication use; of participants who took sulfonylureas or dipeptidyl peptidase-4 inhibitors at baseline, 6/10 in the LCK group discontinued these medications compared with 0/6 in the MCCR group (p = .005). In a 12-month trial, adults with elevated HbA1c and body weight assigned to an LCK diet had greater reductions in HbA1c, lost more weight, and reduced more medications than those instructed to follow an MCCR diet.


Subject(s)
Diabetes Mellitus, Type 2/diet therapy , Diet, Carbohydrate-Restricted , Dietary Carbohydrates/administration & dosage , Obesity , Prediabetic State/diet therapy , Adolescent , Adult , Blood Glucose , Cholesterol/blood , Diabetes Mellitus, Type 2/blood , Diet, Ketogenic , Female , Glycated Hemoglobin , Humans , Male , Middle Aged , Obesity/complications , Obesity/diet therapy , Prediabetic State/blood , Treatment Outcome , Weight Loss , Young Adult
19.
JMIR Diabetes ; 2(1): e5, 2017 Mar 07.
Article in English | MEDLINE | ID: mdl-30291062

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) is typically managed with a reduced fat diet plus glucose-lowering medications, the latter often promoting weight gain. OBJECTIVE: We evaluated whether individuals with T2D could be taught by either on-site group or remote means to sustain adequate carbohydrate restriction to achieve nutritional ketosis as part of a comprehensive intervention, thereby improving glycemic control, decreasing medication use, and allowing clinically relevant weight loss. METHODS: This study was a nonrandomized, parallel arm, outpatient intervention. Adults with T2D (N=262; mean age 54, SD 8, years; mean body mass index 41, SD 8, kg·m-2; 66.8% (175/262) women) were enrolled in an outpatient protocol providing intensive nutrition and behavioral counseling, digital coaching and education platform, and physician-guided medication management. A total of 238 participants completed the first 10 weeks. Body weight, capillary blood glucose, and beta-hydroxybutyrate (BOHB) levels were recorded daily using a mobile interface. Hemoglobin A1c (HbA1c) and related biomarkers of T2D were evaluated at baseline and 10-week follow-up. RESULTS: Baseline HbA1c level was 7.6% (SD 1.5%) and only 52/262 (19.8%) participants had an HbA1c level of <6.5%. After 10 weeks, HbA1c level was reduced by 1.0% (SD 1.1%; 95% CI 0.9% to 1.1%, P<.001), and the percentage of individuals with an HbA1c level of <6.5% increased to 56.1% (147/262). The majority of participants (234/262, 89.3%) were taking at least one diabetes medication at baseline. By 10 weeks, 133/234 (56.8%) individuals had one or more diabetes medications reduced or eliminated. At follow-up, 47.7% of participants (125/262) achieved an HbA1c level of <6.5% while taking metformin only (n=86) or no diabetes medications (n=39). Mean body mass reduction was 7.2% (SD 3.7%; 95% CI 5.8% to 7.7%, P<.001) from baseline (117, SD 26, kg). Mean BOHB over 10 weeks was 0.6 (SD 0.6) mmol·L-1 indicating consistent carbohydrate restriction. Post hoc comparison of the remote versus on-site means of education revealed no effect of delivery method on change in HbA1c (F1,260=1.503, P=.22). CONCLUSIONS: These initial results indicate that an individualized program delivered and supported remotely that incorporates nutritional ketosis can be highly effective in improving glycemic control and weight loss in adults with T2D while significantly decreasing medication use.

20.
Metabolism ; 65(3): 100-10, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26892521

ABSTRACT

BACKGROUND: Many successful ultra-endurance athletes have switched from a high-carbohydrate to a low-carbohydrate diet, but they have not previously been studied to determine the extent of metabolic adaptations. METHODS: Twenty elite ultra-marathoners and ironman distance triathletes performed a maximal graded exercise test and a 180 min submaximal run at 64% VO2max on a treadmill to determine metabolic responses. One group habitually consumed a traditional high-carbohydrate (HC: n=10, %carbohydrate:protein:fat=59:14:25) diet, and the other a low-carbohydrate (LC; n=10, 10:19:70) diet for an average of 20 months (range 9 to 36 months). RESULTS: Peak fat oxidation was 2.3-fold higher in the LC group (1.54±0.18 vs 0.67±0.14 g/min; P=0.000) and it occurred at a higher percentage of VO2max (70.3±6.3 vs 54.9±7.8%; P=0.000). Mean fat oxidation during submaximal exercise was 59% higher in the LC group (1.21±0.02 vs 0.76±0.11 g/min; P=0.000) corresponding to a greater relative contribution of fat (88±2 vs 56±8%; P=0.000). Despite these marked differences in fuel use between LC and HC athletes, there were no significant differences in resting muscle glycogen and the level of depletion after 180 min of running (-64% from pre-exercise) and 120 min of recovery (-36% from pre-exercise). CONCLUSION: Compared to highly trained ultra-endurance athletes consuming an HC diet, long-term keto-adaptation results in extraordinarily high rates of fat oxidation, whereas muscle glycogen utilization and repletion patterns during and after a 3 hour run are similar.


Subject(s)
Adaptation, Physiological , Diet, Carbohydrate-Restricted , Physical Endurance/physiology , Running/physiology , Adult , Anaerobic Threshold , Cross-Sectional Studies , Dietary Carbohydrates/pharmacology , Dietary Fats/metabolism , Exercise Test , Glycogen/metabolism , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , Oxidation-Reduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...