Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biotechnol J ; 17(4): 776-788, 2019 04.
Article in English | MEDLINE | ID: mdl-30230695

ABSTRACT

Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop for the winter fallow period throughout the temperate regions of the world, controlling soil erosion and nutrients run-off on otherwise barren farmland. We demonstrate that pennycress can serve as a user-friendly model system akin to Arabidopsis that is well-suited for both laboratory and field experimentation. We sequenced the diploid genome of the spring-type Spring 32-10 inbred line (1C DNA content of 539 Mb; 2n = 14), identifying variation that may explain phenotypic differences with winter-type pennycress, as well as predominantly a one-to-one correspondence with Arabidopsis genes, which makes translational research straightforward. We developed an Agrobacterium-mediated floral dip transformation method (0.5% transformation efficiency) and introduced CRISPR-Cas9 constructs to produce indel mutations in the putative FATTY ACID ELONGATION1 (FAE1) gene, thereby abolishing erucic acid production and creating an edible seed oil comparable to that of canola. We also stably transformed pennycress with the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene, producing low-viscosity acetyl-triacylglycerol-containing seed oil suitable as a diesel-engine drop-in fuel. Adoption of pennycress as a model system will accelerate oilseed-crop translational research and facilitate pennycress' rapid domestication to meet the growing sustainable food and fuel demands.


Subject(s)
Arabidopsis/genetics , Diacylglycerol O-Acyltransferase/metabolism , Euonymus/enzymology , Genome, Plant/genetics , Plant Oils/metabolism , Thlaspi/genetics , Crops, Agricultural , Diacylglycerol O-Acyltransferase/genetics , Erucic Acids/metabolism , Euonymus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Thlaspi/metabolism
2.
Plant Sci ; 227: 122-32, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25219314

ABSTRACT

Oilseed crops are sources of oils and seed meal having a multitude of uses. While the domestication of soybean and rapeseed took extended periods of time, new genome-based techniques have ushered in an era where crop domestication can occur rapidly. One attractive target for rapid domestication is the winter annual plant Field Pennycress (Thlaspi arvense L.; pennycress; Brassicaceae). Pennycress grows widespread throughout temperate regions of the world and could serve as a winter oilseed-producing cover crop. If grown throughout the USA Midwest Corn Belt, for example, pennycress could produce as much as 840L/ha oils and 1470kg/ha press-cake annually on 16 million hectares of farmland currently left fallow during the fall through spring months. However, wild pennycress strains have inconsistent germination and stand establishment, un-optimized maturity for a given growth zone, suboptimal oils and meal quality for biofuels and food production, and significant harvest loss due to pod shatter. In this review, we describe the virtues and current shortcomings of pennycress and discuss how knowledge from studying Arabidopsis thaliana and other Brassicas, in combination with the advent of affordable next generation sequencing, can bring about the rapid domestication and improvement of pennycress and other crops.


Subject(s)
Crops, Agricultural/genetics , Genetic Engineering , Phenotype , Plant Oils/metabolism , Seeds/metabolism , Thlaspi/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , High-Throughput Nucleotide Sequencing , Thlaspi/growth & development , Thlaspi/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...