Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(21): 9992-10000, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38742312

ABSTRACT

A series of thiosemicarbazonato-hydrazinatopyridine zinc(II) complexes were evaluated as direct air CO2 capture agents. The complexes sequester CO2 in a methanol solution as a metal-coordinated methylcarbonate. The reaction is reversible upon sparging of solutions with an inert gas (N2 or Ar). The capture process involves metal-ligand cooperativity with the noncoordinating nitrogen of the hydrazinatopyridine functional group serving as a Brønsted-Lowry base and the zinc acting as a Lewis acid. In this study, the pendent amine of the thiosemicarbazonato group was varied to include 4-phenyl (ZnL5), 4-(trifluoromethyl)phenyl (ZnL6), 4-cyanophenyl (ZnL7), 4-tolyl (ZnL8), and 4-naphthyl (ZnL9). Hyperconjugation between the pendent group and the ligand core resulted in modulation of the metal ion acidity, as quantified by ligand exchange equilibrium constants (K3 = 193-511) and ligand basicity (pKa,MeOH = 11.09-11.94). Variations in electronic structure that decreased ligand basicity were more than offset by increases in Lewis acidity. The equilibrium constant (K1) for CO2 capture varied from 46300 to 73700. Overall, the value of K1 was directly related to the relative Lewis acidity of the complexes (K3). Notably, there was an overall inverse relationship between K1 and the ligand basicity. The results provide insights into ligand design to further improve CO2 capture.

2.
Inorg Chem ; 62(6): 2751-2759, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36715745

ABSTRACT

In this study, a series of thiosemicarbazonato-hydrazinatopyridine metal complexes were evaluated as CO2 capture agents. The complexes incorporate a non-coordinating, basic hydrazinatopyridine nitrogen in close proximity to a Lewis acidic metal ion allowing for metal-ligand cooperativity. The coordination of various metal ions with (diacetyl-2-(4-methyl-thiosemicarbazone)-3-(2-hydrazinopyridine) (H2L1) yielded ML1 (M = Ni(II), Pd(II)), ML1(CH3OH) (M = Cu(II), Zn(II)), and [ML1(PPh3)2]BF4 (M = Co(III)) complexes. The ML1(CH3OH) complexes reversibly capture CO2 with equilibrium constants of 88 ± 9 and 6900 ± 180 for Cu(II) and Zn(II), respectively. Ligand effects were evaluated with Zn(II) through variation of the 4-methyl-thiosemicarbazone with 4-ethyl (H2L2), 4-phenethyl (H2L3), and 4-benzyl (H2L4) derivatives. The equilibrium constant for CO2 capture increased to 11,700 ± 300, 15,000 ± 400, and 35,000 ± 200 for ZnL2(MeOH), ZnL3(MeOH), and ZnL4(MeOH), respectively. Quantification of ligand basicity and metal ion Lewis acidity shows that changes in CO2 capture affinity are largely associated with ligand basicity upon substitution of Cu(II) with Zn(II), while variation of the thiosemicarbazone ligand enhances CO2 affinity by tuning the metal ion Lewis acidity. Overall, the Zn(II) complexes effectively capture CO2 from dilute sources with up to 90%, 86%, and 65% CO2 capture efficiency from 400, 1000, and 2500 ppm CO2 streams.

3.
Inorg Chem ; 61(25): 9792-9800, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35687329

ABSTRACT

In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pKa of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at -1.83 and -1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at -2.43 and -2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s-1 at an overpotential of 0.74 V for NiL1 and 8280 s-1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.


Subject(s)
Hydrogen , Nickel , Acetonitriles , Ligands , Nickel/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...