Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 25(1): e14210, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991141

ABSTRACT

OBJECTIVE: This study aims to develop a ResNet50-based deep learning model for focal liver lesion (FLL) classification in ultrasound images, comparing its performance with other models and prior research. METHODOLOGY: We retrospectively collected 581 ultrasound images from the Chulabhorn Hospital's HCC surveillance and screening project (2010-2018). The dataset comprised five classes: non-FLL, hepatic cyst (Cyst), hemangioma (HMG), focal fatty sparing (FFS), and hepatocellular carcinoma (HCC). We conducted 5-fold cross-validation after random dataset partitioning, enhancing training data with data augmentation. Our models used modified pre-trained ResNet50, GGN, ResNet18, and VGG16 architectures. Model performance, assessed via confusion matrices for sensitivity, specificity, and accuracy, was compared across models and with prior studies. RESULTS: ResNet50 outperformed other models, achieving a 5-fold cross-validation accuracy of 87 ± 2.2%. While VGG16 showed similar performance, it exhibited higher uncertainty. In the testing phase, the pretrained ResNet50 excelled in classifying non-FLL, cysts, and FFS. To compare with other research, ResNet50 surpassed the prior methods like two-layered feed-forward neural networks (FFNN) and CNN+ReLU in FLL diagnosis. CONCLUSION: ResNet50 exhibited good performance in FLL diagnosis, especially for HCC classification, suggesting its potential for developing computer-aided FLL diagnosis. However, further refinement is required for HCC and HMG classification in future studies.


Subject(s)
Carcinoma, Hepatocellular , Cysts , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Retrospective Studies , Neural Networks, Computer
2.
J Appl Clin Med Phys ; 24(11): e14178, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37819022

ABSTRACT

PURPOSE: Liver cirrhosis disrupts liver function and tissue perfusion, detectable by magnetic resonance imaging (MRI). Assessing liver function at the voxel level with 13-b value intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) could aid in radiation therapy liver-sparing treatment for patients with early impairment. This study aimed to evaluate the feasibility of IVIM-DWI for liver function assessment and correlate it with other multiparametric (mp) MRI methods at the voxel level. METHOD: This study investigates the variability of apparent diffusion coefficient (ADC) derived from 13-b value IVIM-DWI and B1-corrected dual flip angle (DFA) T1 mapping. Experiments were conducted in-vitro with QIBA and NIST phantoms and in 10 healthy volunteers for IVIM-DWI. Additionally, 12 patients underwent an mp-MRI examination. The imaging protocol included a 13-b value IVIM-DWI sequence for generating IVIM parametric maps. B1-corrected DFA T1 pulse sequence was used for generating T1 maps, and Gadoxatate low temporal resolution dynamic contrast-enhanced (LTR-DCE) MRI was used for generating the Hepatic extraction fraction (HEF) map. The Mann-Whitney U test was employed to compare IVIM-DWI parameters (Pure Diffusion, Dslow ; Pseudo diffusion, Dfast ; and Perfusion Fraction, Fp ) between the healthy volunteer and patient groups. Furthermore, in the patient group, statistical correlations were assessed at a voxel level between LTR-DCE MRI-derived HEF, T1 post-Gadoxetate administration, ΔT1%, and various IVIM parameters using Pearson correlation. RESULTS: For-vitro measurements, the maximum coefficient of variation of the ADC and T1 parameters was 12.4% and 16.1%, respectively. The results also showed that Fp and Dfast were able to distinguish between healthy liver function and mild liver function impairment at the global level, with p = 0.002 for Fp and p < 0.001 for Dfast . Within the patient group, these parameters also exhibited a moderate correlation with HEF at the voxel level. CONCLUSION: Overall, the study highlighted the potential of Dfast and Fp for detecting liver function impairment at both global and pixel levels.


Subject(s)
Liver Cirrhosis , Humans , Pilot Projects , Bayes Theorem , Motion , Liver Cirrhosis/diagnostic imaging
3.
J Appl Clin Med Phys ; 24(5): e13928, 2023 May.
Article in English | MEDLINE | ID: mdl-36763489

ABSTRACT

OBJECTIVE: Intratumoral heterogeneity is associated with poor outcomes in head and neck cancer (HNC) patients owing to chemoradiotherapy resistance. [18 F]-FDG positron emission tomography (PET) / Magnetic Resonance Imaging (MRI) provides spatial information about tumor mass, allowing intratumor heterogeneity assessment through histogram analysis. However, variability in quantitative PET/MRI parameter measurements could influence their reliability in assessing patient prognosis. Therefore, to use standardized uptake value (SUV) and apparent diffusion coefficient (ADC) parameters for assessing tumor response, this study aimed to measure SUV and ADC's variability and assess their relationship in HNC. METHODS: First, ADC variability was measured in an in-house diffusion phantom and in five healthy volunteers. The SUV variability was only measured with the NEMA phantom using a clinical imaging protocol. Furthermore, simultaneous PET/MRI data of 11 HNC patients were retrospectively collected from the National Cyclotron and PET center in Chulabhorn Hospital. Tumor contours were manually drawn from PET images by an experienced nuclear medicine radiologist before tumor volume segmentation. Next, SUV and ADC's histogram were used to extract statistic variables of ADC and SUV: mean, median, min, max, skewness, kurtosis, and 5th , 10th , 25th , 50th , 75th , 90th , and 95th percentiles. Finally, the correlation between the statistic variables of ADC and SUV, as well as Metabolic Tumor volume and Total Lesion Glycolysis parameters was assessed using Pearson's correlation. RESULTS: This pilot study showed that both parameters' maximum coefficient of variation was 13.9% and 9.8% in the phantom and in vivo, respectively. Furthermore, we found a strong and negative correlation between SUVmax and ADVmed (r = -0.75, P = 0.01). CONCLUSION: The SUV and ADC obtained by simultaneous PET/MRI can be potentially used as an imaging biomarker for assessing intratumoral heterogeneity in patients with HNC. The low variability and relationship between SUV and ADC could allow multimodal prediction of tumor response in future studies.


Subject(s)
Head and Neck Neoplasms , Magnetic Resonance Imaging , Humans , Reproducibility of Results , Pilot Projects , Retrospective Studies , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Fluorodeoxyglucose F18 , Head and Neck Neoplasms/diagnostic imaging , Radiopharmaceuticals
4.
J Med Radiat Sci ; 70 Suppl 2: 48-58, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36088635

ABSTRACT

INTRODUCTION: In this study, we aimed to investigate the feasibility of gadoxetate low-temporal resolution (LTR) DCE-MRI for voxel-based hepatic extraction fraction (HEF) quantification for liver sparing radiotherapy using a deconvolution analysis (DA) method. METHODS: The accuracy and consistency of the deconvolution implementation in estimating liver function was first assessed using simulation data. Then, the method was applied to DCE-MRI data collected retrospectively from 64 patients (25 normal liver function and 39 cirrhotic patients) to generate HEF maps. The normal liver function patient data were used to measure the variability of liver function quantification. Next, a correlation between HEF and ALBI score (a new model for assessing the severity of liver dysfunction) was assessed using Pearson's correlation. Differences in HEF between Child-Pugh score classifications were assessed for significance using the Kruskal-Wallis test for all patient groups and Mann-Whitney U-test for inter-groups. A statistical significance was considered at a P-value <0.05 in all tests. RESULTS: The results showed that the implemented method accurately reproduced simulated liver function; root-mean-square error between estimated and simulated liver response functions was 0.003, and the coefficient-of-variance of HEF was <20%. HEF correlation with ALBI score was r = -0.517, P < 0.0001, and HEF was significantly decreased in the cirrhotic patients compared to normal patients (P < 0.0001). Also, HEF in Child-Pugh B/C was significantly lower than in Child-Pugh A (P = 0.024). CONCLUSION: The study demonstrated the feasibility of gadoxetate LTR-DCE MRI for voxel-based liver function quantification using DA. HEF could distinguish between different grades of liver function impairment and could potentially be used for functional guidance in radiotherapy.


Subject(s)
Liver Cirrhosis , Liver Neoplasms , Humans , Retrospective Studies , Liver Cirrhosis/diagnostic imaging , Magnetic Resonance Imaging , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...