Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 30(6): 1057-62, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20060704

ABSTRACT

This study presents a systematic comparison and evaluation of sewage sludge pre-treatment by mechanical and thermal techniques. Waste activated sludge (WAS) was pre-treated by separate full scale Thermo-Pressure-Hydrolysis (TDH) and ball milling facilities. Then the sludge was processed in pilot-scale digestion experiments. The results indicated that a significant increase in soluble organic matter could be achieved. TDH and ball milling pre-treatment could offer a feasible treatment method to efficiently disintegrate sludge and enhance biogas yield of digestion. The TDH increased biogas production by ca. 75% whereas ball milling allowed for an approximately 41% increase. The mechanisms of pre-treatment were investigated by numerical modeling based on Anaerobic Digestion Model No. 1 (ADM1) in the MatLab/SIMBA environment. TDH process induced advanced COD-solubilisation (COD(soluble)/COD(total)=43%) and specifically complete destruction of cell mass which is hardly degradable in conventional digestion. While the ball mill technique achieved a lower solubilisation rate (COD(soluble)/COD(total)=28%) and only a partial destruction of microbial decay products. From a whole-plant prospective relevant release of ammonia and formation of soluble inerts have been observed especially from thermal hydrolysis.


Subject(s)
Environmental Pollution/prevention & control , Sewage , Ammonia/analysis , Biodegradation, Environmental , Biofuels , Hydrolysis , Pressure , Temperature
2.
Water Sci Technol ; 58(8): 1547-53, 2008.
Article in English | MEDLINE | ID: mdl-19001706

ABSTRACT

This paper presents benefits and potential drawbacks of thermal pre-hydrolysis of sewage sludge from an operator's prospective. The innovative continuous Thermo-Pressure-Hydrolysis Process (TDH) has been tested in full-scale at Zirl wastewater treatment plant (WWTP), Austria, and its influence on sludge digestion and dewatering has been evaluated. A mathematical plant-wide model with application of the IWA Activated Sludge Model No.1 (ASM1) and the Anaerobic Digestion Model No.1 (ADM1) has been used for a systematic comparison of both scenarios--operational plant performance with and without thermal pre-hydrolysis. The impacts of TDH pre-hydrolysis on biogas potential, dewatering performance and return load in terms of ammonia and inert organic compounds (Si) have been simulated by the calibrated model and are displayed by Sankey mass flow figures. Implementation of full scale TDH process provided higher anaerobic degradation efficiency with subsequent increased biogas production (+75-80%) from waste activated sludge (WAS). Both effects--enhanced degradation of organic matter and improved cake's solids content from 25.2 to 32.7% TSS--promise a reduction in sludge disposal costs of about 25%. However, increased ammonia release and generation of soluble inerts Si was observed when TDH process was introduced.


Subject(s)
Industrial Waste , Water Pollutants/isolation & purification , Hydrolysis , Models, Theoretical , Sewage
3.
Water Sci Technol ; 58(7): 1467-73, 2008.
Article in English | MEDLINE | ID: mdl-18957761

ABSTRACT

Thermal hydrolysis is known for an efficient sludge disintegration capability to enhance biogas potential--but to which extent? Obviously, residual VSS concentration in digested sludge gives not sufficient information to predict additional biogas potential. In this paper, different types of waste activated sludge (WAS) were pre-hydrolysed by a full-scale Thermo-Pressure-Hydrolysis Process (Thermo-Druck-Hydrolyse, TDH) and break-down mechanisms on specific organic compounds were investigated. The IWA Anaerobic Digestion Model No.1 (ADM1) has been used for a systematic analysis of monitoring data gained from experimental work. The TDH process combined with anaerobic digestion can be well described by a modified ADM1 model that includes an X(P)-fraction (inactivated aerobic biomass and their decay products). More rapid and more complete degradation of TDH-treated sludge is represented by calibrated disintegration rate and disintegration factors, while biokinetic parameters of acetogenesis and methanogenesis show no sensitivity. TDH process impacts mainly biomass and decay products while inerts Xi already contained in the raw wastewater are hardly converted. Final concentration of soluble inerts in digestion effluent has been increased from 2% to 9% of influent COD due to thermal hydrolysis. An increase in biogas generation (ca. +80%) and in ammonia release (ca. +75%) can be explained by complete degradation of cell mass.


Subject(s)
Sewage/chemistry , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Anaerobiosis , Biodegradation, Environmental , Hydrolysis , Models, Theoretical , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Pressure , Sewage/microbiology , Temperature
4.
Water Sci Technol ; 55(10): 21-8, 2007.
Article in English | MEDLINE | ID: mdl-17564366

ABSTRACT

Different digestion technologies for various substrates are addressed by the generic process description of Anaerobic Digestion Model No. 1. In the case of manure or agricultural wastes a priori knowledge about the substrate in terms of ADM1 compounds is lacking and influent characterisation becomes a major issue. The actual project has been initiated for promotion of biogas technology in agriculture and for expansion of profitability also to rather small capacity systems. In order to avoid costly individual planning and installation of each facility a standardised design approach needs to be elaborated. This intention pleads for bio kinetic modelling as a systematic tool for process design and optimisation. Cofermentation under field conditions was observed, quality data and flow data were recorded and mass flow balances were calculated. In the laboratory different substrates have been digested separately in parallel under specified conditions. A configuration of four ADM1 model reactors was set up. Model calibration identified disintegration rate, decay rates for sugar degraders and half saturation constant for sugar as the three most sensitive parameters showing values (except the latter) about one order of magnitude higher than default parameters. Finally, the model is applied to the comparison of different reactor configurations and volume partitions. Another optimisation objective is robustness and load flexibility, i.e. the same configuration should be adaptive to different load situations only by a simple recycle control in order to establish a standardised design.


Subject(s)
Anaerobiosis , Bacteria/metabolism , Bioreactors , Manure/microbiology , Methane/biosynthesis , Models, Theoretical , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...