Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 564: 89-93, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24525250

ABSTRACT

Sensitisation of the capsaicin receptor, transient receptor potential vanilloid type 1 (TRPV1) ion channel in nociceptive primary sensory neurons (PSN) underlies the development of inflammatory heat hyperalgesia. Removal of the negative-dominant splice variant of the TRPV1 molecule, TRPV1b from TRPV1/TRPV1b heterotetrameric channels, which should be associated with changes in the expression of TRPV1 and TRPV1b transcripts and proteins, has been suggested to contribute to that sensitisation. Respective reverse-transcriptase polymerase chain reaction (RT-PCR) and Western-blotting revealed that both TRPV1 and TRPV1b mRNA, and their encoded proteins are expressed in rat cultured PSN. Sequencing of the RT-PCR products showed that TRPV1b mRNA lacks the entire exon 7. Further, growing PSN for 2 days in the presence of 10µM bradykinin (BK) and 10µM prostaglandin E2 (PGE2) significantly increases TRPV1 responsiveness and TRPV1 mRNA expression, without producing any changes in TRPV1b mRNA, and TRPV1 and TRPV1b protein expression. These data challenge the hypothesis that alterations in the composition of the TRPV1 ion channel contributes to the sensitisation.


Subject(s)
Bradykinin/pharmacology , Dinoprostone/pharmacology , Nociceptors/metabolism , TRPV Cation Channels/biosynthesis , Animals , Capsaicin/pharmacology , Cells, Cultured , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Nociceptors/drug effects , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
2.
Biochem Mol Biol Educ ; 38(6): 393-9, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21567868

ABSTRACT

RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode in vitro transcription promoters fused to sequences from Drosophila genes of the Rho/Rac GTPase family. These DNA templates are then used to synthesize double stranded RNAs (dsRNA), which are subsequently used to transfect Drosophila Kc embryonic cells. The resulting RNAi produces simple cellular phenotypes that are observed following fluorescent histochemical staining. These phenotypes are ultimately related to gene ontology data that the students generate through a bioinformatic analysis of the sequences transcribed into dsRNA. Taken together, this laboratory exercise provides "hands on" experience of RNAi in a class setting and provides a framework for the in-depth discussion of how this technique can be applied to studies of gene function.

SELECTION OF CITATIONS
SEARCH DETAIL
...