Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34788431

ABSTRACT

Assessments of genomic prediction accuracies using artificial intelligent (AI) algorithms (i.e., machine and deep learning methods) are currently not available or very limited in aquaculture species. The principal aim of this study was to examine the predictive performance of these new methods for disease resistance to Edwardsiella ictaluri in a population of striped catfish Pangasianodon hypophthalmus and to make comparisons with four common methods, i.e., pedigree-based best linear unbiased prediction (PBLUP), genomic-based best linear unbiased prediction (GBLUP), single-step GBLUP (ssGBLUP) and a nonlinear Bayesian approach (notably BayesR). Our analyses using machine learning (i.e., ML-KAML) and deep learning (i.e., DL-MLP and DL-CNN) together with the four common methods (PBLUP, GBLUP, ssGBLUP, and BayesR) were conducted for two main disease resistance traits (i.e., survival status coded as 0 and 1 and survival time, i.e., days that the animals were still alive after the challenge test) in a pedigree consisting of 560 individual animals (490 offspring and 70 parents) genotyped for 14,154 single nucleotide polymorphism (SNPs). The results using 6,470 SNPs after quality control showed that machine learning methods outperformed PBLUP, GBLUP, and ssGBLUP, with the increases in the prediction accuracies for both traits by 9.1-15.4%. However, the prediction accuracies obtained from machine learning methods were comparable to those estimated using BayesR. Imputation of missing genotypes using AlphaFamImpute increased the prediction accuracies by 5.3-19.2% in all the methods and data used. On the other hand, there were insignificant decreases (0.3-5.6%) in the prediction accuracies for both survival status and survival time when multivariate models were used in comparison to univariate analyses. Interestingly, the genomic prediction accuracies based on only highly significant SNPs (P < 0.00001, 318-400 SNPs for survival status and 1,362-1,589 SNPs for survival time) were somewhat lower (0.3-15.6%) than those obtained from the whole set of 6,470 SNPs. In most of our analyses, the accuracies of genomic prediction were somewhat higher for survival time than survival status (0/1 data). It is concluded that although there are prospects for the application of genomic selection to increase disease resistance to E. ictaluri in striped catfish breeding programs, further evaluation of these methods should be made in independent families/populations when more data are accumulated in future generations to avoid possible biases in the genetic parameters estimates and prediction accuracies for the disease-resistant traits studied in this population of striped catfish P. hypophthalmus.


Subject(s)
Catfishes , Edwardsiella ictaluri , Algorithms , Animals , Artificial Intelligence , Bayes Theorem , Catfishes/genetics , Disease Resistance/genetics , Genomics/methods , Genotype , Humans , Models, Genetic , Polymorphism, Single Nucleotide
2.
Front Genet ; 13: 1081246, 2022.
Article in English | MEDLINE | ID: mdl-36685869

ABSTRACT

Common full-sib families (c 2 ) make up a substantial proportion of total phenotypic variation in traits of commercial importance in aquaculture species and omission or inclusion of the c 2 resulted in possible changes in genetic parameter estimates and re-ranking of estimated breeding values. However, the impacts of common full-sib families on accuracy of genomic prediction for commercial traits of economic importance are not well known in many species, including aquatic animals. This research explored the impacts of common full-sib families on accuracy of genomic prediction for tagging weight in a population of striped catfish comprising 11,918 fish traced back to the base population (four generations), in which 560 individuals had genotype records of 14,154 SNPs. Our single step genomic best linear unbiased prediction (ssGLBUP) showed that the accuracy of genomic prediction for tagging weight was reduced by 96.5%-130.3% when the common full-sib families were included in statistical models. The reduction in the prediction accuracy was to a smaller extent in multivariate analysis than in univariate models. Imputation of missing genotypes somewhat reduced the upward biases in the prediction accuracy for tagging weight. It is therefore suggested that genomic evaluation models for traits recorded during the early phase of growth development should account for the common full-sib families to minimise possible biases in the accuracy of genomic prediction and hence, selection response.

SELECTION OF CITATIONS
SEARCH DETAIL
...