Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Plant Sci ; 11: 569057, 2020.
Article in English | MEDLINE | ID: mdl-33133115

ABSTRACT

Wheat (Triticum aestivum L.) crop health assumes unprecedented significance in being the second most important staple crop of the world. It is host to an array of fungal pathogens attacking the plant at different developmental stages and accrues various degrees of yield losses owing to these. Tilletia indica that causes Karnal bunt (KB) disease in wheat is one such fungal pathogen of high quarantine importance restricting the free global trade of wheat besides the loss of grain yield as well as quality. With global climate change, the disease appears to be shifting from its traditional areas of occurrence with reports of increased vulnerabilities of new areas across the continents. This KB vulnerability of new geographies is of serious concern because once established, the disease is extremely difficult to eradicate and no known instance of its complete eradication using any management strategy has been reported yet. The host resistance to KB is the most successful as well as preferred strategy for its mitigation and control. However, breeding of KB resistant wheat cultivars has proven to be not so easy, and the low success rate owes to the scarcity of resistance sources, extremely laborious and regulated field screening protocols delaying identification/validation of putative resistance sources, and complex quantitative nature of resistance with multiple genes conferring only partial resistance. Moreover, given a lack of comprehensive understanding of the KB disease epidemiology, host-pathogen interaction, and pathogen evolution. Here, in this review, we attempt to summarize the progress made and efforts underway toward a holistic understanding of the disease itself with a specific focus on the host-pathogen interaction between T. indica and wheat as key elements in the development of resistant germplasm. In this context, we emphasize the tools and techniques being utilized in development of KB resistant germplasm by illuminating upon the genetics concerning the host responses to the KB pathogen including a future course. As such, this article could act as a one stop information primer on this economically important and re-emerging old foe threatening to cause devastating impacts on food security and well-being of communities that rely on wheat.

2.
Front Plant Sci ; 11: 1309, 2020.
Article in English | MEDLINE | ID: mdl-32983199

ABSTRACT

Tan spot caused by Pyrenophora tritici-repentis (Ptr) is an important disease of wheat in many wheat producing areas of the world. A genome wide association study (GWAS) was conducted using 11,401 SNP markers of the Illumina Infinium 15K Bead Chip with whole genome coverage to identify genomic regions associated with resistance to tan spot in a diverse panel of 184 wheat genotypes originating from South Asia and CIMMYT. The GWAS panel was phenotyped for seedling resistance to tan spot with Ptr race 1 in two greenhouse experiments. Besides CIMMYT germplasm, several lines from South Asia (India, Bangladesh and Nepal) showed good degree of resistance to tan spot. Association mapping was conducted separately for individual experiments and for pooled data using mixed linear model (MLM) and Fixed and random model Circulating Probability Unification (FarmCPU) model; no significant MTAs were recorded through the MLM model, whereas FarmCPU model reported nine significant MTAs located on chromosomes 1B, 2A, 2B, 3B, 4A, 5A, 5B, 6A, and 7D. The long arms of chromosomes 5A and 5B were consistent across both environments, in which the Vrn-A1 locus was found in identified region of chromosome 5A, and MTA at IACX9261 on 5BL appears to represent the resistance gene tsn 1. MTAs observed on chromosomes 1B, 2A, 2B, 3B, 4A, 6A, and 7D have not been reported previously and are likely novel.

SELECTION OF CITATIONS
SEARCH DETAIL
...