Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
J Biotechnol ; 332: 1-10, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33741406

ABSTRACT

A stirred tank bioreactor (STR) coupled with two column bioreactors (CRs) was used for ethanol production from sweet sorghum stem juice by Saccharomyces cerevisiae SSJ01KKU in a very high gravity fermentation. The effects of the medium circulation rate between the STR and CRs (2.6 and 5.2 mL/min, corresponding to 25 and 50 % of the S. cerevisiae specific growth rate), the starting time of medium circulation (0 and 4 h) and cell inoculation were investigated. The results showed that a medium circulation rate of 5.2 mL/min, starting the medium circulation at the beginning of fermentation (0 h) with cell inoculation into the STR only were appropriate conditions for ethanol production. This yielded an average ethanol concentration (PE) of 120.96 g/L and ethanol productivity (QP) of 2.52 g/L⋅h. When a repeated-batch (RB) ethanol fermentation in the STR coupled with CR was carried out using a drain and fill technique at different volumes (75 and 90 %, referenced as RB1 and RB2, respectively), it was found that at least eight successive cycles could be operated under both RB1 and RB2. The average PE and QP for RB1 and RB2 were not significantly different. However, the average total ethanol production rate in RB2 (3.25 g/h) over the eight cycles was significantly higher than that of RB1 (2.60 g/h).


Subject(s)
Hypergravity , Sorghum , Bioreactors , Ethanol , Fermentation , Saccharomyces cerevisiae
2.
Electron. j. biotechnol ; 46: 55-64, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223246

ABSTRACT

BACKGROUND: Ethanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥10%, v/v), QP, (≥2.5 g/L·h) and SC (≥90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied. RESULTS: The initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180­200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different. CONCLUSION: Initial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.


Subject(s)
Saccharomyces cerevisiae/metabolism , Sorghum/chemistry , Ethanol/metabolism , Saccharomyces cerevisiae/growth & development , Urea , Yeasts/growth & development , Aeration , Sorghum/microbiology , Ethanol/analysis , Sugars , Juices , Fermentation , Gravitation , Nitrogen
3.
Electron. j. biotechnol ; 26: 84-92, Mar. 2017. graf, tab
Article in English | LILACS | ID: biblio-1008992

ABSTRACT

Background: Fermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01. Results: In the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h. Conclusions: In the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.


Subject(s)
Sorghum/metabolism , Ethanol/metabolism , Biofuels , Fermentation , Saccharomyces cerevisiae/metabolism , Dietary Supplements , Sorghum/chemistry , Batch Cell Culture Techniques , Gravitation , Nitrogen
4.
J Biotechnol ; 243: 69-75, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27988216

ABSTRACT

The aim of this study was to model batch ethanol production from sweet sorghum juice (SSJ), under normal gravity (NG, 160g/L of total sugar) and high gravity (HG, 240g/L of total sugar) conditions with and without nutrient supplementation (9g/L of yeast extract), by Saccharomyces cerevisiae NP 01. Growth and ethanol production increased with increasing initial sugar concentration, and the addition of yeast extract enhanced both cell growth and ethanol production. From the results, either logistic or a modified Gompertz equation could be used to describe yeast growth, depending on information required. Furthermore, the modified Gompertz model was suitable for modeling ethanol production. Both the models fitted the data very well with coefficients of determination exceeding 0.98. The results clearly showed that these models can be employed in the development of ethanol production processes using SSJ under both NG and HG conditions. The models were also shown to be applicable to other ethanol fermentation systems employing pure and mixed sugars as carbon sources.


Subject(s)
Batch Cell Culture Techniques/methods , Ethanol/metabolism , Models, Chemical , Plant Extracts/metabolism , Sorghum/metabolism , Carbohydrate Metabolism , Carbohydrates/administration & dosage , Carbon/administration & dosage , Carbon/metabolism , Fermentation , Fruit and Vegetable Juices/microbiology , Hypergravity , Kinetics , Plant Extracts/chemistry , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Sorghum/chemistry
5.
Electron. j. biotechnol ; 9(4)July 2006. ilus, tab, graf
Article in English | LILACS | ID: lil-451656

ABSTRACT

The effect of glutaraldehyde, a commercial biocide widely used in paper and pulp industry, on the performance of laboratory-scale rotating biological contactors (RBCs) as well as biocide efficacy was studied. Biofilms were established on the RBCs and then exposed to 0 - 180 ppm glutaraldehyde at a dilution rate of 1.60 h-1. The results showed that the biofilms became acclimated to glutaraldehyde and eventually could degrade it. Acclimation to the biocide took longer at the higher biocide concentrations. The degree of biocide degradation and chemical oxygen demand (COD) removal depended on acclimation period, the presence of other organic matters and the amount of mineral salts available. Glutaraldehyde at up to 80 ppm had no effect on treatment efficiency and populations of biofilms and planktonic phase of the system whereas glutaraldehyde at 180 ppm caused a progressive decline in all measured values. However, no glutaraldehyde concentration used in the study was sufficiently high to kill microorganisms in the RBC system. The presence of biofilm provided additional resistance to glutaraldehyde to bacteria because the biocide had to penetrate through biofilm to reach bacteria. The increased resistance of bacteria to glutaraldehyde due to acclimation should be considered in biocide applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...