Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38117547

ABSTRACT

Thailand experienced five waves of coronavirus disease 2019 (COVID-19) between 2020 and 2022, with the Bangkok Metropolitan Region (BMR) being at the centre of all outbreaks. The molecular evolution of the causative agent of the disease, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has previously been characterized in Thailand, but a detailed spatiotemporal analysis is still lacking. In this study, we comprehensively reviewed the development and timelines of the five COVID-19 outbreaks in Thailand and the public health responses, and also conducted a phylogenetic analysis of 27 913 SARS-CoV-2 genomes from Thailand, together with 7330 global references, to investigate the virus's spatiotemporal evolution during 2020 and 2022, with a particular focus on the BMR. Limited cross-border transmission was observed during the first four waves in 2020 and 2021, but was common in 2022, aligning well with the timeline of change in the international travel restrictions. Within the country, viruses were mostly restricted to the BMR during the first two waves in 2020, but subsequent waves in 2021 and 2022 saw extensive nationwide transmission of the virus, consistent with the timeline of relaxation of disease control measures employed within the country. Our results also suggest frequent epidemiological connections between Thailand and neighbouring countries during 2020 and 2021 despite relatively stringent international travel controls. The overall sequencing rate of the viruses circulating in the BMR was ~0.525 %, meeting the recommended benchmark, and our analysis supports that this is sufficient for tracking of the trend of the virus burden and genetic diversity. Our findings reveal insights into the local transmission dynamics of SARS-CoV-2 in Thailand, and provide a valuable reference for planning responses to future outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , Thailand/epidemiology , Disease Outbreaks
2.
Sci Rep ; 13(1): 13324, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587174

ABSTRACT

Mutations in whiB7 have been associated with both hypersusceptibility and resistance to various antibiotics in Mycobacterium tuberculosis (Mtb). Unlocking the secrets of antibiotic resistance in the bacterium, we examined mutations in the coding sequences of whiB7 of over 40,000 diverse Mtb isolates. Our results unveil the dominant c.191delG (Gly64delG) mutation, present in all members of the lineage L1.2.2 and its impact on WhiB7's conserved GVWGG-motif, causing conformational changes and deletion of the C-terminal AT-hook. Excitingly, we discovered six unique mutations associated with partial or total deletion of the AT-hook, specific to certain sublineages. Our findings suggest the selective pressures driving these mutations, underlining the potential of genomics to advance our understanding of Mtb's antibiotic resistance. As tuberculosis remains a global health threat, our study offers valuable insights into the diverse nature and functional consequences of whiB7 mutations, paving the way for the development of novel therapeutic interventions.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , AT-Hook Motifs , Anti-Bacterial Agents , Exons , Sequence Deletion
3.
Genome Biol Evol ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-36852863

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, and scientists around the world are currently studying the virus intensively in order to fight against the on-going pandemic of the virus. To do so, SARS-CoV-2 is typically grown in the lab to generate viral stocks for various kinds of experimental investigations. However, accumulating evidence suggests that such viruses often undergo cell culture adaptation. Here, we systematically explored cell culture adaptation of two SARS-CoV-2 variants, namely the B.1.36.16 variant and the AY.30 variant, a sub lineage of the B.1.617.2 (Delta) variant, propagated in three different cell lines, including Vero E6, Vero E6/TMPRSS2, and Calu-3 cells. Our analyses detected numerous potential cell culture adaptation changes scattering across the entire virus genome, many of which could be found in naturally circulating isolates. Notable ones included mutations around the spike glycoprotein's multibasic cleavage site, and the Omicron-defining H655Y mutation on the spike glycoprotein, as well as mutations in the nucleocapsid protein's linker region, all of which were found to be Vero E6-specific. Our analyses also identified deletion mutations on the non-structural protein 1 and membrane glycoprotein as potential Calu-3-specific adaptation changes. S848C mutation on the non-structural protein 3, located to the protein's papain-like protease domain, was also identified as a potential adaptation change, found in viruses propagated in all three cell lines. Our results highlight SARS-CoV-2 high adaptability, emphasize the need to deep-sequence cultured viral samples when used in intricate and sensitive biological experiments, and illustrate the power of experimental evolutionary study in shedding lights on the virus evolutionary landscape.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , SARS-CoV-2/genetics , Vero Cells , Glycoproteins
4.
Viruses ; 14(4)2022 04 12.
Article in English | MEDLINE | ID: mdl-35458526

ABSTRACT

Human pegivirus-1 (HPgV-1) is a lymphotropic human virus, typically considered nonpathogenic, but its infection can sometimes cause persistent viremia both in immunocompetent and immunosuppressed individuals. In a viral discovery research program in hematopoietic stem cell transplant (HSCT) pediatric patients, HPgV-1 was detected in 3 out of 14 patients (21.4%) using a target enrichment next-generation sequencing method, and the presence of the viruses was confirmed by agent-specific qRT-PCR assays. For the first time in this patient cohort, complete genomes of HPgV-1 were acquired and characterized. Phylogenetic analyses indicated that two patients had HPgV-1 genotype 2 and one had HPgV-1 genotype 3. Intra-host genomic variations were described and discussed. Our results highlight the necessity to screen HSCT patients and blood and stem cell donors to reduce the potential risk of HPgV-1 transmission.


Subject(s)
Flaviviridae Infections , GB virus C , Hematopoietic Stem Cell Transplantation , Child , GB virus C/genetics , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Metagenomics , Phylogeny , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...