Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 36(7): 1821-1831, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33930124

ABSTRACT

STUDY QUESTION: Does the addition of oral dydrogesterone to vaginal progesterone as luteal phase support improve pregnancy outcomes during frozen embryo transfer (FET) cycles compared with vaginal progesterone alone? SUMMARY ANSWER: Luteal phase support with oral dydrogesterone added to vaginal progesterone had a higher live birth rate and lower miscarriage rate compared with vaginal progesterone alone. WHAT IS KNOWN ALREADY: Progesterone is an important hormone that triggers secretory transformation of the endometrium to allow implantation of the embryo. During IVF, exogenous progesterone is administered for luteal phase support. However, there is wide inter-individual variation in absorption of progesterone via the vaginal wall. Oral dydrogesterone is effective and well tolerated when used to provide luteal phase support after fresh embryo transfer. However, there are currently no data on the effectiveness of luteal phase support with the combination of dydrogesterone with vaginal micronized progesterone compared with vaginal micronized progesterone after FET. STUDY DESIGN, SIZE, DURATION: Prospective cohort study conducted at an academic infertility center in Vietnam from 26 June 2019 to 30 March 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS: We studied 1364 women undergoing IVF with FET. Luteal support was started when endometrial thickness reached ≥8 mm. The luteal support regimen was either vaginal micronized progesterone 400 mg twice daily plus oral dydrogesterone 10 mg twice daily (second part of the study) or vaginal micronized progesterone 400 mg twice daily (first 4 months of the study). In women with a positive pregnancy test, the appropriate luteal phase support regimen was continued until 7 weeks' gestation. The primary endpoint was live birth after the first FET of the started cycle, with miscarriage <12 weeks as one of the secondary endpoints. MAIN RESULTS AND THE ROLE OF CHANCE: The vaginal progesterone + dydrogesterone group and vaginal progesterone groups included 732 and 632 participants, respectively. Live birth rates were 46.3% versus 41.3%, respectively (rate ratio [RR] 1.12, 95% CI 0.99-1.27, P = 0.06; multivariate analysis RR 1.30 (95% CI 1.01-1.68), P = 0.042), with a statistically significant lower rate of miscarriage at <12 weeks in the progesterone + dydrogesterone versus progesterone group (3.4% versus 6.6%; RR 0.51, 95% CI 0.32-0.83; P = 0.009). Birth weight of both singletons (2971.0 ± 628.4 versus 3118.8 ± 559.2 g; P = 0.004) and twins (2175.5 ± 494.8 versus 2494.2 ± 584.7; P = 0.002) was significantly lower in the progesterone plus dydrogesterone versus progesterone group. LIMITATIONS, REASONS FOR CAUTION: The main limitations of the study were the open-label design and the non-randomized nature of the sequential administration of study treatments. However, our systematic comparison of the two strategies was able to be performed much more rapidly than a conventional randomized controlled trial. In addition, the single ethnicity population limits external generalizability. WIDER IMPLICATIONS OF THE FINDINGS: Our findings study suggest a role for oral dydrogesterone in addition to vaginal progesterone as luteal phase support in FET cycles to reduce the miscarriage rate and improve the live birth rate. Carefully planned prospective cohort studies with limited bias could be used as an alternative to randomized controlled clinical trials to inform clinical practice. STUDY FUNDING/COMPETING INTERESTS: This study received no external funding. LNV has received speaker and conference fees from Merck, grant, speaker and conference fees from Merck Sharpe and Dohme, and speaker, conference and scientific board fees from Ferring; TMH has received speaker fees from Merck, Merck Sharp and Dohme, and Ferring; R.J.N. has received scientific board fees from Ferring and receives grant funding from the National Health and Medical Research Council (NHMRC) of Australia; BWM has acted as a paid consultant to Merck, ObsEva and Guerbet, and is the recipient of grant money from an NHMRC Investigator Grant. TRIAL REGISTRATION NUMBER: NCT0399876.


Subject(s)
Dydrogesterone , Progesterone , Australia , Female , Fertilization in Vitro , Humans , Luteal Phase , Pregnancy , Pregnancy Rate , Prospective Studies , Vietnam
2.
J Assist Reprod Genet ; 38(6): 1293-1302, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33825118

ABSTRACT

PURPOSE: In vitro maturation (IVM) is an alternative to in vitro fertilization (IVF) for women at high risk of developing ovarian hyperstimulation syndrome (OHSS). This study determined the effectiveness and safety of a freeze-only strategy versus fresh embryo transfer (ET) after IVM with a pre-maturation step (CAPA-IVM) in women with a high antral follicle count (AFC). METHODS: This randomized, controlled pilot study (NCT04297553) was conducted between March and November 2020. Forty women aged 18-37 years with a high AFC (≥24 follicles in both ovaries) undergoing one cycle of CAPA-IVM were randomized to a freeze-only strategy with subsequent frozen ET (n = 20) or to fresh ET (n = 20). The primary endpoint was ongoing pregnancy resulting in live birth after the first ET of the started treatment cycle. RESULTS: The ongoing pregnancy rate in the freeze-only group (65%) was significantly higher than that in the fresh ET group (25%; p = 0.03), as was the live birth rate (60% versus 20%; p = 0.02). Clinical pregnancy rate was numerically, but not significantly, higher after frozen versus fresh ET (70% versus 35%; p = 0.06), while the number of day 3 or good quality embryos, endometrial thickness on the day of oocyte pick-up, implantation rate, and positive pregnancy test rate did not differ significantly between groups. No cases of OHSS were observed, and miscarriage and multiple pregnancy rates were similar in the two groups. CONCLUSIONS: These findings suggest that the effectiveness of CAPA-IVM could be improved considerably by using a freeze-only strategy followed by frozen ET in subsequent cycles. TRIAL REGISTRATION NUMBER: NCT04297553 ( www.clinicaltrials.gov ).


Subject(s)
Freezing/adverse effects , In Vitro Oocyte Maturation Techniques , Oocytes/growth & development , Ovarian Follicle/growth & development , Adolescent , Adult , Birth Rate , Cryopreservation/methods , Embryo Transfer , Female , Humans , Live Birth/epidemiology , Ovulation Induction/methods , Pregnancy , Pregnancy Rate , Young Adult
3.
Hum Reprod ; 35(11): 2537-2547, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32974672

ABSTRACT

STUDY QUESTION: Is one cycle of IVM non-inferior to one cycle of conventional in IVF with respect to live birth rates in women with high antral follicle counts (AFCs)? SUMMARY ANSWER: We could not demonstrate non-inferiority of IVM compared with IVF. WHAT IS KNOWN ALREADY: IVF with ovarian hyperstimulation has limitations in some subgroups of women at high risk of ovarian stimulation, such as those with polycystic ovary syndrome. IVM is an alternative ART for these women. IVM may be a feasible alternative to IVF in women with a high AFC, but there is a lack of data from randomized clinical trials comparing IVM with IVF in women at high risk of ovarian hyperstimulation syndrome. STUDY DESIGN, SIZE, DURATION: This single-center, randomized, controlled non-inferiority trial was conducted at an academic infertility center in Vietnam from January 2018 to April 2019. PARTICIPANTS/MATERIALS, SETTING, METHODS: In total, 546 women with an indication for ART and a high AFC (≥24 follicles in both ovaries) were randomized to the IVM (n = 273) group or the IVF (n = 273) group; each underwent one cycle of IVM with a prematuration step versus one cycle of IVF using a standard gonadotropin-releasing hormone antagonist protocol with gonadotropin-releasing hormone agonist triggering. The primary endpoint was live birth rate after the first embryo transfer. The non-inferiority margin for IVM versus IVF was -10%. MAIN RESULTS AND THE ROLE OF CHANCE: Live birth after the first embryo transfer occurred in 96 women (35.2%) in the IVM group and 118 women (43.2%) in the IVF group (absolute risk difference -8.1%; 95% confidence interval (CI) -16.6%, 0.5%). Cumulative ongoing pregnancy rates at 12 months after randomization were 44.0% in the IVM group and 62.6% in the IVF group (absolute risk difference -18.7%; 95% CI -27.3%, -10.1%). Ovarian hyperstimulation syndrome did not occur in the IVM group, versus two cases in the IVF group. There were no statistically significant differences between the IVM and IVF groups with respect to the occurrence of pregnancy complications, obstetric and perinatal complications, preterm delivery, birth weight and neonatal complications. LIMITATIONS, REASONS FOR CAUTION: The main limitation of the study was its open-label design. In addition, the findings are only applicable to IVM conducted using the prematuration step protocol used in this study. Finally, the single ethnicity population limits the external generalizability of the findings. WIDER IMPLICATIONS OF THE FINDINGS: Our randomized clinical trial compares live birth rates after IVM and IVF. Although IVM is a viable and safe alternative to IVF that may be suitable for some women seeking a mild ART approach, the current study findings approach inferiority for IVM compared with IVF when cumulative outcomes are considered. Future research should incorporate multiple cycles of IVM in the study design to estimate cumulative fertility outcomes and better inform clinical decision-making. STUDY FUNDING/COMPETING INTEREST(S): This work was partly supported by Ferring grant number 000323 and funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) and by the Fund for Research Flanders (FWO). LNV has received speaker and conference fees from Merck, grant, speaker and conference fees from Merck Sharpe and Dohme, and speaker, conference and scientific board fees from Ferring; TMH has received speaker fees from Merck, Merck Sharp and Dohme, and Ferring; RJN has received conference and scientific board fees from Ferring, is a minor shareholder in an IVF company, and receives grant funding from the National Health and Medical Research Council (NHMRC) of Australia; BWM has acted as a paid consultant to Merck, ObsEva and Guerbet, and is the recipient of grant money from an NHMRC Investigator Grant; RBG reports grants and fellowships from the NHMRC of Australia; JS reports lecture fees from Ferring Pharmaceuticals, Biomérieux, Besins Female Healthcare and Merck, grants from Fund for Research Flanders (FWO), and is co-inventor on granted patents on CAPA-IVM methodology in the US (US10392601B2) and Europe (EP3234112B1); TDP, VQD, VNAH, NHG, AHL, THP and RW have no financial relationships with any organizations that might have an interest in the submitted work in the previous three years, and no other relationships or activities that could appear to have influenced the submitted work. TRIAL REGISTRATION NUMBER: NCT03405701 (www.clinicaltrials.gov). TRIAL REGISTRATION DATE: 16 January 2018. DATE OF FIRST PATENT'S ENROLMENT: 25 January 2018.


Subject(s)
Infertility , Australia , Europe , Female , Fertilization in Vitro , Humans , Infant, Newborn , Oocytes , Pregnancy , Vietnam
4.
BMJ Open ; 8(12): e023413, 2018 12 09.
Article in English | MEDLINE | ID: mdl-30530584

ABSTRACT

INTRODUCTION: In vitro maturation (IVM) is a potential alternative to conventional in vitro fertilisation (IVF) to avoid ovarian hyperstimulation syndrome (OHSS). This is particularly relevant in women with a high antral follicle count (AFC) and/or polycystic ovary syndrome (PCOS), who are at increased risk for OHSS. However, no randomised controlled trials of IVM versus IVF in women with high AFC have reported both pregnancy and OHSS rates. The aim of this study is to compare the effectiveness and safety of one IVM cycle and one IVF with segmentation cycle within women with PCOS or high AFC-related subfertility. METHODS AND ANALYSIS: This randomised controlled trial will be conducted at a specialist IVF centre in Vietnam. Eligible subfertile women with PCOS and/or high AFC will be randomised to undergo either IVM or IVF. The primary outcome is live birth after the first embryo transfer of the started treatment cycle. Cycles in which no embryo is available for transfer will be considered as failures. The study has a non-inferiority design, with a maximal acceptable between-group difference of 5%. Rates of OHSS will also be reported. ETHICS AND DISSEMINATION: Ethical approval was obtained from the participating centre, and informed patient consent was obtained before study enrolment. Results of the study will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT03405701; Pre-results.


Subject(s)
Fertilization in Vitro , In Vitro Oocyte Maturation Techniques , Ovarian Follicle , Adult , Embryo Transfer , Female , Humans , Infant, Newborn , Ovarian Hyperstimulation Syndrome/prevention & control , Polycystic Ovary Syndrome/complications , Pregnancy , Risk Factors , Treatment Outcome , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...