Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(9): e2105248, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35332701

ABSTRACT

To date, a number of studies have reported the use of vibrations coupled to ferroelectric materials for water splitting. However, producing a stable particle suspension for high efficiency and long-term stability remains a challenge. Here, the first report of the production of a nanofluidic BaTiO3 suspension containing a mixture of cubic and tetragonal phases that splits water under ultrasound is provided. The BaTiO3 particle size reduces from approximately 400 nm to approximately 150 nm during the application of ultrasound and the fine-scale nature of the particulates leads to the formation of a stable nanofluid consisting of BaTiO3 particles suspended as a nanofluid. Long-term testing demonstrates repeatable H2 evolution over 4 days with a continuous 24 h period of stable catalysis. A maximum rate of H2 evolution is found to be 270 mmol h-1 g-1 for a loading of 5 mg l-1 of BaTiO3 in 10% MeOH/H2 O. This work indicates the potential of harnessing vibrations for water splitting in functional materials and is the first demonstration of exploiting a ferroelectric nanofluid for stable water splitting, which leads to the highest efficiency of piezoelectrically driven water splitting reported to date.

2.
J Hazard Mater ; 416: 126123, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492917

ABSTRACT

Toxicity biosensors have recently gained significant attention due to their potential use in online monitoring. However, the effects of toxicants and the influence of dose, exposure time, and type and concentration of respiration substrate (RS) on the performance of a bioreactor are species-specific. Although these factors need to be investigated case-by-case as they can lead either to damage or self-repair of the affected microorganisms, they have seldom been considered in previous studies. Therefore, this work examined, for the first time, the effects of resting time and RS concentration on the performance of the biosensing system for toxicity of Cr6+ in water. In addition, it is also the first time that a novel non-contact fluid delivery system was applied to a toxicity biosensing system to prevent unstable responses. By choosing the best RS concentration and balancing the resting and exposure times, the proposed procedure exhibits promising results in terms of minimum detectable concentration (MDC), limit of detection (LOD), detection range, linearity, sensitivity, reproducibility and accuracy. The recovery time was only a few hours and the coefficients of variation of inhibition and recovery were only 12% and 9.6%, respectively, during six times reuse over one month of storage.


Subject(s)
Biosensing Techniques , Metals, Heavy , Heavy Metal Poisoning , Humans , Metals, Heavy/toxicity , Reproducibility of Results , Water
3.
Environ Sci Pollut Res Int ; 27(16): 20554-20564, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32274695

ABSTRACT

A simple approach was developed for the rapid and accurate estimation of 5-day biochemical oxygen demand (BOD5) in food processing wastewater. Immobilization of the natural microbial consortium that was collected from an aerobic compartment of a food processing wastewater treatment plant was simply performed by adhesion using a low-cost porous carrier. Pseudomonas aeruginosa, Bacillus cereus, and Streptomyces, whose salt-tolerance and ability to break down organic compounds have been widely reported, were found to be predominant. These microorganisms may cause an enhancement of the bioreactor response in the presence of sodium chloride. Consequently, a modified glucose-glutamic acid (GGA) calibration standard was proposed in which an appropriate amount of NaCl was added; this solution was found to be more effective in terms of accuracy and practicality than both conventional GGA and the synthetic wastewater recipe from the Organisation for Economic Cooperation and Development (OECD). The calibrated self-built packed-bed bioreactor exhibited good precision of 3% or less in predicting BOD5 in influent, which is similar to the performance of the most common commercial biochemical oxygen demand (BOD) bioreactors. There was a statistical agreement between the results obtained from this rapid BOD biosensor and the conventional methods, even when testing treated wastewater samples.


Subject(s)
Biosensing Techniques , Wastewater/analysis , Bioreactors , Food Handling , Oxygen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...