Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 620(7976): 1080-1088, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37612508

ABSTRACT

Chromosomal instability (CIN) is a driver of cancer metastasis1-4, yet the extent to which this effect depends on the immune system remains unknown. Using ContactTracing-a newly developed, validated and benchmarked tool to infer the nature and conditional dependence of cell-cell interactions from single-cell transcriptomic data-we show that CIN-induced chronic activation of the cGAS-STING pathway promotes downstream signal re-wiring in cancer cells, leading to a pro-metastatic tumour microenvironment. This re-wiring is manifested by type I interferon tachyphylaxis selectively downstream of STING and a corresponding increase in cancer cell-derived endoplasmic reticulum (ER) stress response. Reversal of CIN, depletion of cancer cell STING or inhibition of ER stress response signalling abrogates CIN-dependent effects on the tumour microenvironment and suppresses metastasis in immune competent, but not severely immune compromised, settings. Treatment with STING inhibitors reduces CIN-driven metastasis in melanoma, breast and colorectal cancers in a manner dependent on tumour cell-intrinsic STING. Finally, we show that CIN and pervasive cGAS activation in micronuclei are associated with ER stress signalling, immune suppression and metastasis in human triple-negative breast cancer, highlighting a viable strategy to identify and therapeutically intervene in tumours spurred by CIN-induced inflammation.


Subject(s)
Chromosomal Instability , Disease Progression , Neoplasms , Humans , Benchmarking , Cell Communication , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Tumor Microenvironment , Interferon Type I/immunology , Neoplasm Metastasis , Endoplasmic Reticulum Stress , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology
2.
NPJ Breast Cancer ; 7(1): 81, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34172750

ABSTRACT

STING signaling in cancer is a crucial component of response to immunotherapy and other anti-cancer treatments. Currently, there is no robust method of measuring STING activation in cancer. Here, we describe an immunohistochemistry-based assay with digital pathology assessment of STING in tumor cells. Using this novel approach in estrogen receptor-positive (ER+) and ER- breast cancer, we identify perinuclear-localized expression of STING (pnSTING) in ER+ cases as an independent predictor of good prognosis, associated with immune cell infiltration and upregulation of immune checkpoints. Tumors with low pnSTING are immunosuppressed with increased infiltration of "M2"-polarized macrophages. In ER- disease, pnSTING does not appear to have a significant prognostic role with STING uncoupled from interferon responses. Importantly, a gene signature defining low pnSTING expression is predictive of poor prognosis in independent ER+ datasets. Low pnSTING is associated with chromosomal instability, MYC amplification and mTOR signaling, suggesting novel therapeutic approaches for this subgroup.

3.
Biomed Res Int ; 2017: 4793465, 2017.
Article in English | MEDLINE | ID: mdl-28717648

ABSTRACT

Androgen receptor (AR) activation is the primary driving factor in prostate cancer which is initially responsive to castration but then becomes resistant (castration-resistant prostate cancer (CRPC)). CRPC cells still retain the functioning AR which can be targeted by other therapies. A recent promising development is the use of inhibitors (Epi-1) of protein-protein interaction to inhibit AR-activated signalling. Translating novel therapies into the clinic requires sensitive early response indicators. Here potential response markers are explored. Growth inhibition of prostate cancer cells with flutamide, paclitaxel, and Epi-1 was measured using the MTT assay. To simulate choline-PET scans, pulse-chase experiments were carried out with [3H-methyl]choline and proportion of phosphorylated activity was determined after treatment with growth inhibitory concentrations of each drug. Extracts from treated cells were also subject to 31P-NMR spectroscopy. Cells treated with flutamide demonstrated decreased [3H-methyl]choline phosphorylation, whilst the proportion of phosphorylated [3H-methyl]choline that was present in the lipid fraction was increased in Epi-1-treated cells. Phospholipid breakdown products, glycerophosphorylcholine and glycerophosphoethanolamine levels, were shown by 31P-NMR spectroscopy to be decreased to undetectable levels in cells treated with Epi-1. LNCaP cells responding to treatment with novel protein-protein interaction inhibitors suggest that 31P-NMR spectroscopy may be useful in detecting response to this promising therapy.


Subject(s)
Phospholipids/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Choline/metabolism , Flutamide/pharmacology , Humans , Male , Paclitaxel/pharmacology , Phosphorylation/drug effects , Propane/pharmacology , Prostatic Neoplasms, Castration-Resistant/pathology , Proton Magnetic Resonance Spectroscopy , Treatment Outcome , Tritium/metabolism
4.
Sci Rep ; 6: 36544, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27811956

ABSTRACT

Akt is an intracellular signalling pathway that serves as an essential link between cell surface receptors and cellular processes including proliferation, development and survival. The pathway has many downstream targets including glycogen synthase kinase3 which is a major regulatory kinase for cell cycle transit as well as controlling glycogen synthase activity. The Akt pathway is frequently up-regulated in cancer due to overexpression of receptors such as the epidermal growth factor receptor, or mutation of signalling pathway kinases resulting in inappropriate survival and proliferation. Consequently anticancer drugs have been developed that target this pathway. MDA-MB-468 breast and HCT8 colorectal cancer cells were treated with inhibitors including LY294002, MK2206, rapamycin, AZD8055 targeting key kinases in/associated with Akt pathway and the consistency of changes in 31P-NMR-detecatable metabolite content of tumour cells was examined. Treatment with the Akt inhibitor MK2206 reduced phosphocholine levels in MDA-MB-468 cells. Treatment with either the phosphoinositide-3-kinase inhibitor, LY294002 and pan-mTOR inhibitor, AZD8055 but not pan-Akt inhibitor MK2206 increased uridine-5'-diphosphate-hexose cell content which was suppressed by co-treatment with glycogen synthase kinase 3 inhibitor SB216763. This suggests that there is an Akt-independent link between phosphoinositol-3-kinase and glycogen synthase kinase3 and demonstrates the potential of 31P-NMR to probe intracellular signalling pathways.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromones/pharmacology , ErbB Receptors/metabolism , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Magnetic Resonance Spectroscopy/methods , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Phosphorylation/physiology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/physiology , TOR Serine-Threonine Kinases/antagonists & inhibitors
5.
PLoS One ; 11(3): e0151179, 2016.
Article in English | MEDLINE | ID: mdl-26959405

ABSTRACT

INTRODUCTION: The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho) metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined. METHODS: MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U)]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK), CTP:phosphocholine cytidylyl transferase (CCT) and PtdCho-phospholipase C (PLC) were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography. RESULTS: Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U)]glucose. CONCLUSION: This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.


Subject(s)
Breast Neoplasms/metabolism , Metformin/pharmacology , Phospholipids/metabolism , Cell Line, Tumor , Choline/metabolism , Female , Humans , Phosphatidylcholines/metabolism
6.
Anticancer Res ; 36(1): 87-93, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26722031

ABSTRACT

BACKGROUND: Anticancer drug treatment, particularly with anthracyclines, is frequently associated with cardiotoxicity, an effect exacerbated by trastuzumab. Several compounds are in use clinically to attenuate the cardiac-damaging effects of chemotherapy drugs, including angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, the anti-diabetic drug metformin, and dexrazoxane. However, there is concern that the cardiac-preserving mechanisms of these drugs may also limit the anticancer efficacy of the chemotherapeutic agents. MATERIALS AND METHODS: Herein two breast cancer cell lines, SKBr3 and BT474, overexpressing human epithelial receptor 2 (HER2), the target of the humanised antibody trastuzumab, were treated with a range of concentrations (20-2000 nM) of doxorubicin with and without trastuzumab in the presence of clinically relevant doses of the ACE inhibitor enalapril, the beta-blocker carvedilol, metformin or dexrazoxane, and cell survival determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS: None of the drugs reduced the anticancer effect of doxorubicin or trastuzumab (nor of the two drugs combined). Using Chou and Talalay's combination index, dexrazoxane and doxorubicin were found to act synergistically on the SKBr3 cells. (18)F-Fluoro-2-deoxy-D-glucose ((18)F-FDG) incorporation was reduced by treatment of SKBr3 cells with doxorubicin and this was shown to be due to reduced phosphorylation of (18)F-FDG in doxorubicin-treated cells. Treatment of SKBr3 cells with doxorubicin and dexrazoxane further reduced (18)F-FDG incorporation, indicating that the synergy in the cytotoxicity of these two drugs was reflected in their combined effect on (18)F-FDG incorporation. CONCLUSION: Commonly administered cardioprotective drugs do not interfere with anticancer activity of doxorubicin or tratsuzumab. Further studies to establish the effect of cardioprotective drugs on anticancer drug efficacy would be beneficial.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Cardiomyopathies/prevention & control , Cardiovascular Agents/pharmacology , Adrenergic beta-Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antineoplastic Combined Chemotherapy Protocols/toxicity , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carbazoles/pharmacology , Cardiomyopathies/chemically induced , Cardiotonic Agents/pharmacology , Cardiovascular Agents/toxicity , Carvedilol , Cell Line, Tumor , Cell Survival/drug effects , Dexrazoxane/pharmacology , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Interactions , Enalapril/pharmacology , Female , Fluorodeoxyglucose F18 , Humans , Metformin/pharmacology , Propanolamines/pharmacology , Radionuclide Imaging , Radiopharmaceuticals , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Trastuzumab/pharmacology
7.
J Cancer Res Clin Oncol ; 141(9): 1523-32, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25579456

ABSTRACT

PURPOSES: Metformin, currently undergoing clinical trials as an adjuvant for the treatment of breast cancer, modulates the activity of key intracellular signalling molecules which affect 2-[(18)F]Fluoro-2-deoxy-D-glucose ([(18)F]FDG) incorporation. Here, we investigate the effect of drugs used in the treatment of breast cancer combined with metformin on [(18)F]FDG incorporation in HER2- or HER1-overexpressing breast cancer cells to determine whether or not metformin may obscure changes in [(18)F]FDG incorporation induced by clinically utilised anticancer drugs in the treatment of breast cancer. METHODS: Three breast cancer cell lines expressing HER2 and one HER2 negative but HER1 positive were exposed to metformin, doxorubicin and trastuzumab or cetuximab. Cytotoxicity was measured by the MTT assay. Expression of active (phospho-) AMPK, PKB (Akt) and ERK was determined by Western blotting. [(18)F]FDG incorporation by cells exposed to drug combinations with metformin was determined. Glucose transport was assessed by measuring the initial rate of uptake of [(3)H]O-methyl-D-glucose ([(3)H]OMG). Phosphorylation of [(18)F]FDG was determined in intact cells after exposure to [(18)F]FDG. RESULTS: Phospho-AMPK was increased by metformin in all cell lines whilst phospho-Akt and phospho-ERK expressions were decreased in two. Metformin treatment increased [(18)F]FDG incorporation in all cell lines, and treatment with anti-HER antibodies or doxorubicin only produced minor modulations in the increase induced by metformin alone. Glucose transport was increased in BT474 cells and decreased in SKBr3 and MDA-MB-468 cells after treatment with metformin. The fraction of phosphorylated [(18)F]FDG was increased in metformin-treated cells compared with controls, suggesting that hexokinase efficiency was increased by metformin. CONCLUSION: This is the first study to show that increased [(18)F]FDG incorporation by breast cancer cells induced by metformin overwhelms the effect of doxorubicin and anti-HER treatments on [(18)F]FDG incorporation. Metformin-induced increased [(18)F]FDG incorporation was consistently associated with enhanced [(18)F]FDG phosphorylation.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Doxorubicin/pharmacology , Fluorodeoxyglucose F18/pharmacokinetics , Metformin/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Breast Neoplasms/diagnostic imaging , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , Cetuximab/administration & dosage , Cetuximab/pharmacology , Doxorubicin/administration & dosage , Drug Interactions , ErbB Receptors/immunology , Female , Humans , Metformin/administration & dosage , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Signal Transduction/drug effects , Trastuzumab/administration & dosage , Trastuzumab/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...