Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Q ; 44(1): 1-13, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38712855

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Lactams , Leucine/analogs & derivatives , Plant Extracts , Sulfonic Acids , Vigna , Coronavirus, Feline/drug effects , Antiviral Agents/pharmacology , Animals , Plant Extracts/pharmacology , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/virology , Vigna/chemistry , Virus Replication/drug effects , Cell Line
2.
Molecules ; 28(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36770796

ABSTRACT

The filamentous fungus Aspergillus oryzae, also known as koji mold, has been used for centuries in the production of fermented foods in East Asia. A. oryzae fermentation can produce enzymes and metabolites with various bioactivities. In this study, we investigated whether A. oryzae fermentation extract (AOFE) has any effect on Mycoplasma pneumoniae (Mp) pneumonia. We performed solid-state fermentation of A. oryzae and obtained the ethanol extract. AOFE was analyzed by HPLC, and the major component was identified to be kojic acid. In vitro, AOFE suppressed Mp growth and invasion into A549 lung epithelial cells as determined by the gentamicin protection assay. AOFE treatment also suppressed Mp-stimulated production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 at mRNA and protein levels in murine MH-S alveolar macrophages. In a mouse model of Mp pneumonia, Mp infection induced a marked pulmonary infiltration of neutrophils, which was significantly reduced in mice pre-treated orally with AOFE. AOFE administration also suppressed the production of proinflammatory cytokines and chemokines in the lungs. Collectively, our results show that AOFE has the potential to be developed into a preventive/therapeutic agent for Mp pneumonia.


Subject(s)
Aspergillus oryzae , Pneumonia, Mycoplasma , Animals , Mice , Mycoplasma pneumoniae/metabolism , Fermentation , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , Pneumonia, Mycoplasma/pathology , Inflammation/microbiology , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Front Pharmacol ; 11: 584973, 2020.
Article in English | MEDLINE | ID: mdl-33324216

ABSTRACT

Vigna radiata (L.) R. Wilczek (mung bean) is a Chinese functional food with antioxidant, antimicrobial and anti-inflammatory activities. However, little is known about its antiviral activity. We aimed to investigate the antiviral activity and mechanisms of action of Vigna radiata extract (VRE) against influenza virus. HPLC was conducted to analyze the components of the VRE. The anti-influenza viral activity of VRE in Mardin-Darby canine kidney (MDCK) cells was evaluated by virus titration assays, hemagglutination assays, quantitative RT-PCR assays, cellular α-glucosidase activity assays and neuraminidase activity assays. Chromatographic profiling analysis identified two major flavonoids, vitexin and isovitexin, in the ethanol extract of Vigna radiata. Through in vitro studies, we showed that VRE, at concentrations up to 2,000 µg/ml, exhibited no cytotoxicity in MDCK cells. VRE protected cells from influenza virus-induced cytopathic effects and significantly inhibited viral replication in a concentration-dependent manner. A detailed time-of-addition assay revealed that VRE may act on both the early and late stages of the viral life cycle. We demonstrated that 1) VRE inhibits virus entry by directly blocking the HA protein of influenza virus; 2) VRE inhibits virus entry by directly binding to cellular receptors; 3) VRE inhibits virus penetration; 4) VRE inhibits virus assembly by blocking cellular α-glucosidase activity, thus reducing HA protein trafficking to the cell surface; and 5) VRE inhibits virus release by inhibiting viral neuraminidase activity. In summary, Vigna radiata extract potently interferes with two different subtypes of influenza viruses at multiple steps during the infectious cycle, demonstrating its broad-spectrum potential as an anti-influenza preventive and therapeutic agent. Continued development of Vigna radiata-derived products into antiviral therapeutics is warranted.

4.
Springerplus ; 3: 297, 2014.
Article in English | MEDLINE | ID: mdl-25019045

ABSTRACT

Allergic asthma is an inflammatory disease of the airways mediated by Th2 immune responses and characterized by airway hyperresponsiveness (AHR). Fungi of the genus Ganoderma are basidiomycetes that have been used in traditional Asian medicine for centuries. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the activation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response. This study was designed to investigate whether the Th1 adjuvant properties of PS-F2 could suppress the development of allergic asthma in a mouse model. BALB/c mice were sensitized by repeated immunization with chicken ovalbumin (OVA) and alum, followed by intranasal challenge of OVA to induce acute asthma. PS-F2 administration during the course of OVA sensitization and challenge effectively prevented AHR development, OVA-specific IgE and IgG1 production, bronchial inflammation, and Th2 cytokine production. Our data indicate that PS-F2 has a potential to be used for the prevention of allergic asthma.

5.
Vaccine ; 32(3): 401-8, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24252697

ABSTRACT

The fungus of Ganoderma is a basidiomycete that possesses a variety of pharmacological effects and has been used in traditional Asian medicine for centuries. Ganoderma formosanum is a native Ganoderma species isolated in Taiwan, and we have previously demonstrated that PS-F2, a polysaccharide fraction purified from the submerged culture broth of G. formosanum, exhibits immunostimulatory properties in macrophages. In this study, we further characterized the adjuvant functions of PS-F2. In vitro, PS-F2 stimulated dendritic cells (DCs) to produce proinflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-12/IL-23 p40. PS-F2 also stimulated DCs to express the maturation markers CD40, CD80, CD86, and MHC class II. In a murine splenocyte culture, PS-F2 treatment resulted in elevated expression of T-bet and interferon (IFN)-γ in T lymphocytes. When used as an adjuvant in vivo with the ovalbumin (OVA) antigen, PS-F2 stimulated OVA-specific antibody production and primed IFN-γ production in OVA-specific T lymphocytes. PS-F2-adjuvated immunization also induced OVA-specific CTLs, which protected mice from a challenge with tumor cells expressing OVA. Collectively, our data show that PS-F2 functions as an adjuvant capable of inducing a Th1-polarized adaptive immune response, which would be useful in vaccines against viruses and tumors.


Subject(s)
Adjuvants, Immunologic/pharmacology , Ganoderma/chemistry , Polysaccharides/pharmacology , T-Lymphocytes, Cytotoxic/immunology , Th1 Cells/immunology , Adjuvants, Immunologic/isolation & purification , Animals , Dendritic Cells/drug effects , Dendritic Cells/immunology , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred C57BL , Ovalbumin/administration & dosage , Ovalbumin/immunology , Polysaccharides/isolation & purification , T-Lymphocytes, Cytotoxic/drug effects , Taiwan , Th1 Cells/drug effects , Vaccines/administration & dosage , Vaccines/immunology
6.
BMC Complement Altern Med ; 12: 119, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22883599

ABSTRACT

BACKGROUND: The fungus of Ganoderma is a traditional medicine in Asia with a variety of pharmacological functions including anti-cancer activities. We have purified an extracellular heteropolysaccharide fraction, PS-F2, from the submerged mycelia culture of G. formosanum and shown that PS-F2 exhibits immunostimulatory activities. In this study, we investigated the molecular mechanisms of immunostimulation by PS-F2. RESULTS: PS-F2-stimulated TNF-α production in macrophages was significantly reduced in the presence of blocking antibodies for Dectin-1 and complement receptor 3 (CR3), laminarin, or piceatannol (a spleen tyrosine kinase inhibitor), suggesting that PS-F2 recognition by macrophages is mediated by Dectin-1 and CR3 receptors. In addition, the stimulatory effect of PS-F2 was attenuated in the bone marrow-derived macrophages from C3H/HeJ mice which lack functional Toll-like receptor 4 (TLR4). PS-F2 stimulation triggered the phosphorylation of mitogen-activated protein kinases JNK, p38, and ERK, as well as the nuclear translocation of NF-κB, which all played essential roles in activating TNF-α expression. CONCLUSIONS: Our results indicate that the extracellular polysaccharides produced by G. formosanum stimulate macrophages via the engagement of multiple pattern-recognition receptors including Dectin-1, CR3 and TLR4, resulting in the activation of Syk, JNK, p38, ERK, and NK-κB and the production of TNF-α.


Subject(s)
Ganoderma/metabolism , Macrophage Activation/drug effects , Polysaccharides/pharmacology , Receptors, Pattern Recognition/immunology , Animals , Cell Line , Cytokines/immunology , Female , Ganoderma/chemistry , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Polysaccharides/isolation & purification , Polysaccharides/metabolism , Receptors, Pattern Recognition/genetics , Up-Regulation/drug effects
7.
Biotechnol Lett ; 33(11): 2271-8, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21744272

ABSTRACT

The bioactive components of Ganoderma formosanum have not yet been characterized. We investigated the immunomodulatory activities of the extracellular polysaccharides produced from a submerged mycelial culture of G. formosanum. The polysaccharides were mainly composed of D-mannose, D-galactose and D-glucose. After gel filtration chromatography, three polysaccharide fractions (PS-F1, PS-F2 and PS-F3) were purified. PS-F2 stimulated mouse RAW264.7 macrophages to produce TNF-α and nitric oxide, and enhanced the phagocytic activity of macrophages. PS-F2 challenge in mice triggered an acute inflammatory response characterized by the recruitment of neutrophils and monocytes, which protected mice from subsequent infection of Listeria monocytogenes. The results indicate that the heteropolysaccharides produced by G. formosanum can activate the innate immune response on macrophages.


Subject(s)
Ganoderma/metabolism , Immunologic Factors/metabolism , Listeria monocytogenes/immunology , Listeriosis/prevention & control , Macrophage Activation/drug effects , Macrophages/immunology , Polysaccharides/metabolism , Animals , Bacterial Load , Cell Line , Chromatography, Gel , Ganoderma/growth & development , Immunologic Factors/administration & dosage , Immunologic Factors/chemistry , Immunologic Factors/isolation & purification , Liver/microbiology , Macrophages/drug effects , Mice , Mice, Inbred BALB C , Monosaccharides/analysis , Neutrophils/immunology , Nitric Oxide/metabolism , Phagocytosis/drug effects , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Spleen/microbiology , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...