Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Talanta ; 276: 126283, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776777

ABSTRACT

As an emerging nanoprobe, surface enhanced Raman scattering (SERS) tags hold significant promise in sensing and bioimaging applications due to their attractive merits of anti-photobleaching ability, high sensitivity and specificity, multiplex, and low background capabilities. Recently, several reviews have proposed the application of SERS tags in different fields, however, the specific sensing strategies of SERS tags-based sensors for cellular molecules have not yet been systematically summarized. To provide beneficial and comprehensive insights into the advanced SERS tags technique at the cellular level, this review systematically elaborated on the latest advances in SERS tags-based sensors for cellular molecules detection and imaging. The general SERS tags-based sensing strategies for biomolecules and ions were first introduced according to molecular classes. Then, aiming at such molecules located in the extracellular, cellular membrane and intracellular regions, the tailored strategies by designing and manipulating SERS tags were summarized and explored through several key examples. Finally, the challenges and perspectives of developing high performance of advanced SERS tags were briefly discussed to provide effective guidance for further development and extended applications.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Humans , Biosensing Techniques/methods , Animals , Metal Nanoparticles/chemistry
2.
Mikrochim Acta ; 191(4): 210, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38499672

ABSTRACT

A ratiometric assay was designed to improve the sensitivity and reliability of electrochemical immunosensors for deoxynivalenol (DON) detection. The indicator signal caused by the Fe-based metal-organic framework nanocomposites loaded with gold nanoparticles and the internal reference signal from the [Fe(CN)6]3-/4- in the electrolyte came together at the immunosensor. When immunoreactivity occurred, the indicator signals decreased as the concentration of DON increased, while the internal reference signals increased slightly. The ratio of the indicator signal to the internal reference signal was available for reproducible and sensitive monitoring of DON. The prepared immunosensor showed excellent performance in the range from 0.5 to 5000 pg mL-1, and the detection limit was 0.0166 pg mL-1. The immunosensor achieved satisfactory detection toward DON in spiked and actual samples and has a promising application in the control of DON in grain products.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Trichothecenes , Electrochemical Techniques , Immunoassay , Gold , Reproducibility of Results
3.
Food Chem ; 447: 138977, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38484541

ABSTRACT

In this study, a novel luminescent carbon dot-rooted polysaccharide hydrogel (CDs@CCP hydrogel) was prepared by crosslinking cellulose, chitosan (CS), and polyvinyl alcohol (PVA) for simultaneous fluorescent sensing and adsorption of Cu2+. The crosslinking of these low-cost, polysaccharide polymers greatly enhance the mechanical strength of the composite hydrogel while making the polysaccharide-based adsorbent easy to reuse. This composite hydrogel exhibited an excellent adsorption capacity (124.7 mg∙g-1) for residual Cu2+ in water, as well as a sensitive and selective fluorescence response towards Cu2+ with a good linear relationship (R2 > 0.97) and a low detection limit (LOD) of 0.02 µM. The adsorption isotherms, adsorption kinetics, and thermodynamics studies were also conducted to investigate the adsorption mechanism. This composite hydrogel offers an efficient tool for simultaneous monitoring and treatment of Cu2+ from wastewater.


Subject(s)
Chitosan , Water Pollutants, Chemical , Hydrogels , Carbon , Water , Thermodynamics , Adsorption , Kinetics , Hydrogen-Ion Concentration
4.
Food Chem ; 445: 138740, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38359569

ABSTRACT

Microplastics released from plastic-based filter bags during tea brewing have attracted widespread attention. Laser confocal micro-Raman and direct classical least squares were used to identify and estimate micron-sized microplastics. Characteristic peaks from pyrolysis-gas chromatography/mass spectrometry of polyethylene terephthalate, polypropylene, and nylon 6 were selected to construct curves for quantification submicron-sized microplastics. The results showed that microplastics released from tea bags in the tea infusions ranged from 80 to 1288 pieces (micron-sized) and 0 to 63.755 µg (submicron-sized) per filter bag. Nylon 6 woven tea bags released far fewer microplastics than nonwoven filter bags. In particular, a simple strategy of three pre-washes with room temperature water significantly reduced microplastic residues with removal rates of 76 %-94 % (micron-sized) and 80 %-87 % (submicron-sized), respectively. The developed assay can be used for the quantitative evaluation of microplastics in tea infusions, and the pre-washing reduced the risk of human exposure to microplastics during tea consumption.


Subject(s)
Caprolactam/analogs & derivatives , Microplastics , Water Pollutants, Chemical , Humans , Plastics/analysis , Polymers , Tea , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
5.
J Sci Food Agric ; 104(7): 4136-4144, 2024 May.
Article in English | MEDLINE | ID: mdl-38258891

ABSTRACT

BACKGROUND: Selenium is an important nutritional supplement that mainly exists naturally in soil as inorganic selenium. Saccharomyces cerevisiae cells are excellent medium for converting inorganic selenium in nature into organic selenium. RESULTS: Under the co-stimulation of sodium selenite (Na2SeO3) and potassium selenite (K2SeO3), the activity of selenophosphate synthetase (SPS) was improved up to about five folds more than conventional Na2SeO3 group with the total selenite salts content of 30 mg/L. Transcriptome analysis first revealed that due to the sharing pathway between sodium ion (Na+) and potassium ion (K+), the K+ largely regulates the metabolisms of amino acid and glutathione under the accumulation of selenite salt. Furthermore, K+ could improve the tolerance performance and selenium-biotransformation yields of Saccharomyces cerevisiae cells under Na2SeO3 salt stimulation. CONCLUSION: The important role of K+ in regulating the intracellular selenium accumulation especially in terms of amino acid metabolism and glutathione, suggested a new direction for the development of selenium-enrichment supplements with Saccharomyces cerevisiae cell factory. © 2024 Society of Chemical Industry.


Subject(s)
Saccharomyces , Selenium , Selenium/metabolism , Saccharomyces/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sodium Selenite/metabolism , Selenious Acid/metabolism , Glutathione/metabolism , Sodium/metabolism , Amino Acids/metabolism , Potassium/metabolism
6.
Sensors (Basel) ; 23(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37960503

ABSTRACT

Chinese steamed bread (CSB) is a traditional food of the Chinese nation, and the preservation of its quality and freshness during storage is very important for its industrial production. Therefore, it is necessary to study the storage characteristics of CSB. Non-destructive CT technology was utilized to characterize and visualize the microstructure of CSB during storage, and also to further study of quality changes. Two-dimensional and three-dimensional images of CSBs were obtained through X-ray scanning and 3D reconstruction. Morphological parameters of the microstructure of CSBs were acquired based on CT image using image processing methods. Additionally, commonly used physicochemical indexes (hardness, flexibility, moisture content) for the quality evaluation of CSBs were analyzed. Moreover, a correlation analysis was conducted based on the three-dimensional morphological parameters and physicochemical indexes of CSBs. The results showed that three-dimensional morphological parameters of CSBs were negatively correlated with moisture content (Pearson correlation coefficient range-0.86~-0.97) and positively correlated with hardness (Pearson correlation coefficient range-0.87~0.99). The results indicate the inspiring capability of CT in the storage quality evaluation of CSB, providing a potential analytical method for the detection of quality and freshness in the industrial production of CSB.


Subject(s)
Bread , Food Storage , Bread/analysis , Steam , Tomography , X-Rays
7.
Foods ; 12(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37048355

ABSTRACT

The abuse of organophosphate pesticides causes serious threats to human health, which threatens approximately 3 million people and leads to more than 2000 deaths each year. Therefore, it is necessary to determine the residue of fenitrothion (FT) in environmental and food samples. Herein, we developed a non-enzymatic electrochemical sensor with differential pulse voltammetry signal output to determine FT in model solutions and spiked samples. Delicately, the sensor was designed based on the fabrication of hydrothermally synthesized titanium-based metal-organic frameworks (MOFs) material (NH2-MIL-125(Ti))/reduced graphene oxide (RGO) (NH2-MIL-125(Ti)/RGO) nanocomposites for better target enrichment and electron transfer. The peak response of differential pulse voltammetry for FT under optimized conditions was linear in the range of 0.072-18 µM with the logarithm of concentrations, and the detection limit was 0.0338 µM. The fabricated sensor also demonstrated high stability and reproducibility. Moreover, it exhibited excellent sensing performances for FT in spiked agricultural products. The convenient fabrication method of NH2-MIL-125(Ti)/RGO opens up a new approach for the rational design of non-enzymatic detection methods for pesticides.

8.
Analyst ; 148(9): 2081-2091, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37009662

ABSTRACT

Given the prevalence of food safety, online monitoring of food quality is essential. Surface-enhanced Raman scattering (SERS) has excellent sensitivity and molecular fingerprinting capabilities in analytical fields, but its accuracy in food safety monitoring is severely constrained, particularly for gaseous molecules. To further develop the SERS technique in food sensing, in this work, a slippery liquid-infused porous surface (SLIPS) platform was developed for the real-time monitoring of the change in gaseous molecules in shrimp spoilage processes. In order to monitor the change in pH and gaseous biogenic amine molecules (BAs), 4-mercaptopyridine (4-Mpy) and 4-mercaptobenzaldehyde (4-MBA)-functionalized ZIF-8-encapsulated gold nanostars (AuNS@ZIF-8) were utilized as response probes, respectively. Due to the superior gaseous molecule trapping ability of ZIF-8 and the excellent enrichment effect of SLIPS substrates, the use of 4-Mpy and 4-MBA-functionalized AuNS@ZIF-8-SLIPS substrates exhibited excellent online SERS sensing performance for pH and gaseous putrescine molecules. The detection ranges for pH and gaseous BAs were 4.0-9.0 and 10-7-10-3 (v/v) with RSDs of 4.1% and 4.2%, respectively. Furthermore, the SERS monitoring platform was used to monitor shrimp spoilage at 25 °C and 4 °C in real time. Hence, the AuNS@ZIF-8-SLIPS membrane strategy can serve as a promising alternative to ensure accurate, real-time, and non-destructive monitoring of gaseous molecules for food freshness.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Gold/chemistry , Sulfhydryl Compounds , Seafood , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry
9.
Mikrochim Acta ; 190(5): 169, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016038

ABSTRACT

Molecularly imprinted polymers (MIPs) were combined with surface-enhanced Raman scattering (SERS) and AgNPs were prepared by in situ reduction within the MIP for selective and sensitive detection of sulfamethazine (SMZ). The MIP@AgNPs composites were characterized in detail by several analytical techniques, showing the generation of polymers and the formation of AgNPs hot spots. The specific affinity and rapid adsorption equilibrium rates of MIP@AgNPs composites were verified by static and kinetic adsorption studies. The MIP@AgNPs with high selectivity and excellent sensitivity were used as SERS substrates to detect SMZ. A good linear correlation (R2 = 0.996) in rang of 10-10-10-6 mol L-1 was observed between the Raman signal (1596 cm-1) and the concentration of SMZ. The limit of detection (LOD) was as low as 8.10 × 10-11 mol L-1 with relative standard deviations (RSD) of 6.32%. The good stability and reproducibility are also fully reflected in the SERS detection based on MIP@AgNPs. The method was successfully applied to the analysis of lake water samples, with recoveries in the range 85.1% to 102.5%. In summary, SERS detection based on MIP@AgNPs can be developed for a wider and broader range of practical applications. Schematic illustration of MIP@AgNPs sensor for the SERS detection of sulfamethazine.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122477, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36791663

ABSTRACT

The health risks posed by harmful substances resulting from the thermal degradation of frying oils are of great concern. Characteristic peak intensity ratios (PIRs) screened from Raman spectra were used to characterize the thermal degradation. High correlation coefficients between PIRs and acid values (AVs) of 0.972 (linear fitting), 0.984 (logarithmic function fitting), and 0.954 (linear fitting) for fried soybean oil, canola oil, and palm oil, were obtained at the PIRs of I1267/I1749, I1267/I1659, and I1267/I1749, respectively. The highly correlated PIRs common to the three oils were determined by Pearson's correlation coefficient combined with heat maps. To accommodate both linear and nonlinear features, a global model for predicting AVs of multi-varieties frying oils was constructed using a least-squares support vector machine algorithm, and the results performed well with a root mean square error of prediction of 0.016 and a ratio of prediction to deviation of 11.351. The whole results demonstrate that Raman spectroscopy could characterize the thermal degradation and has excellent quantitative analysis ability for food control based on AV in frying oils, thus providing a new approach to quality control of frying oils.


Subject(s)
Oils , Spectrum Analysis, Raman , Rapeseed Oil , Palm Oil , Acids , Plant Oils/chemistry
11.
Crit Rev Food Sci Nutr ; 63(25): 7341-7356, 2023.
Article in English | MEDLINE | ID: mdl-35229702

ABSTRACT

Pesticides residues in foodstuffs are longstanding of great concern to consumers and governments, thus reliable evaluation techniques for these residues are necessary to ensure food safety. Emerging ambient ionization mass spectrometry (AIMS), a transformative technology in the field of analytical chemistry, is becoming a promising and solid evaluation technology due to its advantages of direct, real-time and in-situ ionization on samples without complex pretreatments. To provide useful guidance on the evaluation techniques in the field of food safety, we offered a comprehensive review on the AIMS technology and introduced their novel applications for the analysis of residual pesticides in foodstuffs under different testing scenarios (i.e., quantitative, screening, imaging, high-throughput detection and rapid on-site analysis). Meanwhile, the creative combination of AIMS with high-resolution mass analyzer (e.g., orbitrap and time-of-flight) was fundamentally mentioned based on recent studies about the detection and evaluation of multi-residual pesticides between 2015 and 2021. Finally, the technical challenges and prospects associated with AIMS operation in food industry were discussed.


Subject(s)
Pesticide Residues , Pesticides , Pesticides/analysis , Radar , Mass Spectrometry/methods , Pesticide Residues/analysis , Food Safety
12.
Crit Rev Food Sci Nutr ; 63(27): 8850-8867, 2023.
Article in English | MEDLINE | ID: mdl-35426753

ABSTRACT

Widespread use of organophosphorus pesticides (OPs), especially superfluous and unreasonable use, had brought huge harm to the environment and food chain. It is because only a small part of the pesticides sprayed reached the target, and the rest slid across the soil, causing pollution of groundwater and surface water resources. These pesticides accumulate in the environment, causing environmental pollution. Therefore, in recent years, the control and degradation of OPs have become a public spotlight and research hotspot. Due to its unique advantages such as versatility, environmental compatibility, controllability, and cost-effectiveness compatibility, electrochemical technology has become one of the most promising methods for degradation of OPs. The fundamental knowledge about electrochemical degradation on OPs was introduced in this review. Then, a comprehensive overview of four main types of practical electrochemical technologies to degrade pesticides were presented and evaluated. The knowledge contained herein should conduce to better understand the degradation of pesticides by electrochemical technology, and better exploit the degradation of pesticides in the environment and food. Overall, the objective of this review is to provide comprehensive guidance for rational design and application of electrochemical technology in the degradation of OPs for the safety of the environment and food chain in the future.


Subject(s)
Pesticides , Organophosphorus Compounds/metabolism , Technology
13.
Foods ; 11(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36140997

ABSTRACT

Microplastic (MP) contamination is a public issue for the environment and for human health. Plastic-based food filter bags, including polyethylene terephthalate, polypropylene, nylon 6 (NY6), and polyethylene, are widely used for soft drink sub-packaging, increasing the risk of MPs in foods and the environment. Three types of commercially available filter bags, including non-woven and woven bags, were collected, and MPs released after soaking were mapped using Raman imaging combined with chemometrics. Compared with peak area imaging at a single characteristic peak, Raman imaging combined with direct classical least squares calculation was more efficient and reliable for identifying MP features. Up to 94% of the bags released MPs after soaking, and there was no significant correlation with soaking conditions. Most MPs were tiny fragments and particles, and a few were fibrous MPs 620-840 µm in size. Woven NY6 filter bags had the lowest risk of releasing MPs. Source exploration revealed that most MPs originated from fragments and particles adsorbed on the surface of bags and strings. The results of this study are applicable to filter bag risk assessment and provide scientific guidance for regulating MPs in food.

14.
Anal Sci ; 38(11): 1385-1394, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35927550

ABSTRACT

Based on the Lewis acid's coordination principle, a surface-enhanced Raman scattering (SERS) chip strategy had been developed for the ultrasensitive quantitation of SO42-. Through the immobilization of silver nanoparticles (Ag NPs) and the construction of the boric acid-based sensing unit, the chip system displayed outstanding merits on the direct sensing of SO42-, e.g., simple operation, ultra-high sensitivity, reproducibility, excellent selectivity and specificity. Moreover, an accurate evaluation was obtained by ratiometric calculations on characteristic peaks (1382 and 1070 cm-1) for quantitative detection of SO42-. The detection limit was down to 10 nM. Tap water, beer, and mineral water samples were tested, and high recoveries were achieved (97.12-110.12%). Besides, such SERS chip also displayed strong applicability for the evaluation of SO32-. Therefore, this SERS chip provided a promising idea for the quantification of trace amounts of SO42- and SO32- in the fields of food safety and environmental monitoring.


Subject(s)
Metal Nanoparticles , Mineral Waters , Silver , Reproducibility of Results , Lewis Acids , Spectrum Analysis, Raman , Sulfates
15.
Crit Rev Food Sci Nutr ; : 1-45, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35930338

ABSTRACT

Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.

16.
Food Chem ; 397: 133844, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35932688

ABSTRACT

Crayfish is one of the most important freshwater aquaculture species in China. The potential risks of crayfish consumption caused by environmental microplastic pollution have attracted much attention. In this study, a total of 72 crayfish samples were exposed to the microplastic concentrations of 1 mg/L, 3 mg/L, and 9 mg/L for 7, 14, and 28 days, and microplastic contamination levels in crayfish were then explored by laser confocal micro-Raman (LCM-Raman) imaging and scanning electron microscope (SEM). LCM-Raman imaging showed better performance in microplastics identification. Besides, the average percentage of the contaminated area in visualized LCM-Raman images was used to quantitatively assess contamination levels. Following 28 days of exposure to 9 mg/L microplastics, microplastic accumulation reached about 13,000 particles per crayfish. The results confirmed that LCM-Raman imaging combined with image processing technology could be used to construct a high-performance analytical strategy for the assessment of microplastic contamination in crayfish.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Astacoidea , Environmental Monitoring , Lasers , Plastics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
17.
Biosens Bioelectron ; 216: 114601, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35973276

ABSTRACT

The development and application of cell-based biosensors (CBBs) provides a convenient strategy for rapid detection of target analytes. The CBBs had been widely applied in the fields of food safety, environment monitoring, and medicine diagnosis due to their advantages of short response time, easy operation, low toxicity, and portability. However, the CBBs based on two-dimensional (2D) cultured cells in-vitro suffer from a lower cell viability and isolated physiology, which had blocked the accurate evaluations of these biosensors. With the development of nanotechnology and three-dimensional (3D) printing technology, cells fixed in a 3D biosensor or a 3D microenvironment have shown great improvement in the sensitivity and detection authenticity than conventional CBBs. To promote the further development of CBBs, in this paper, we reviewed the related technologies used to construct 3D bionic cell chips including organic/inorganic agents and operating approaches suitable for constructing 3D cell cultural microenvironment. Then, the applications of 3D bionic cell chip based on microbial and mammalian cell biosensors in food safety field were discussed during recent ten years. Finally, the current challenges and further directions were summarized and prospected.


Subject(s)
Biosensing Techniques , Animals , Biosensing Techniques/methods , Environmental Monitoring , Food Safety , Mammals , Nanotechnology
18.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35943403

ABSTRACT

It is well known that food safety has aroused extensive attentions from governments to researchers and to food industries. As a versatile technology based on molecular interactions, aptamer sensors which could specifically identify a wide range of food contaminants have been extensively studied in recent years. Surface-enhanced Raman spectroscopy integrated aptamer combines the advantages of both technologies, not only in the ability to specifically identify a wide range of food contaminants, but also in the ultra-high sensitivity, simplicity, portable and speed. To provide beneficial insights into the evaluation techniques in the field of food safety, we offer a comprehensive review on the design strategies for aptamer-SERS sensors in different scenarios, including non-nucleic acid amplification methods ("on/off" mode, sandwich mode, competition model and catalytic model) and nucleic acid amplification methods (hybridization chain reaction, rolling circle amplification, catalytic hairpin assembly). Meanwhile, a special attention is paid to the application of aptamer-SERS sensors in biological (foodborne pathogenic, bacteria and mycotoxins) and chemical contamination (drug residues, metal ions, and food additives) of food matrix. Finally, the challenges and prospects of developing reliable aptamer-SERS sensors for food safety were discussed, which are expected to offer a strong guidance for further development and extended applications.

19.
Food Funct ; 13(11): 5946-5952, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35617027

ABSTRACT

Torularhodin, as a new functional carotenoid, possesses great application potential in disease intervention. However, its absorption process and corresponding mechanism have not been studied. In this study, a rat postprandial model was established to explore the absorption and mechanism of torularhodin by investigating the bioavailability of torularhodin in different tissues, the expression of related enzymes and several transporters in the intestine. The results showed that torularhodin entered the intestine faster from micelles (45.21 ± 2.61% was absorbed in the duodenum), and part of it was metabolized into retinol in the anterior segment of the intestine. The expression of genes indicated that absorption of torularhodin in the intestine might require transporter CD36 and SR-B1. The special structure and target organ might be speculated to be the main reason for the low bioavailability of torularhodin in the serum and liver. The results could lay a theoretical foundation for the chemical modification, carrier and subsequent development of torularhodin.


Subject(s)
Carotenoids , Intestinal Absorption , Animals , Biological Availability , Carotenoids/chemistry , Liver , Rats
20.
Macromol Rapid Commun ; 43(6): e2100785, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35075726

ABSTRACT

Hydrogels, as the most typical elastomer materials with three-dimensional (3D) network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility, and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, this review is done with the promises and challenges for the future evolution of hydrogels and their biological applications.


Subject(s)
Hydrogels , Polymers , Hydrogels/chemistry , Ions , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...