Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(26): 18432-18443, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38860257

ABSTRACT

The presence of methyl orange (MO) and ciprofloxacin (CIP) in wastewater poses a serious threat to the environment and human health. Titanium dioxide nanoparticles (TiO2 NPs) are widely studied as photocatalysts for wastewater treatment. However, TiO2 NPs have the drawbacks of high energy required for activation, fast electron-hole pair recombination and difficulty in recovering from water. To overcome these problems, europium decorated titanium dioxide/poly(vinylidene fluoride) (Eu-TiO2/PVDF) membranes were successful prepared in this work by combining the modified sol-gel method and the immersion phase inversion method. The Eu-TiO2/PVDF membranes obtained with the increase of Eu-TiO2 NPs content during the preparation process were named M1, M2 and M3, respectively. The pure PVDF membrane without the addition of Eu-TiO2 NPs was named M0, which was prepared by the immersion phase inversion method and served as a reference. The prepared Eu-TiO2/PVDF membranes could not only adsorb MO, but also degrade CIP under visible-light irradiation. Moreover, the Eu-TiO2/PVDF membranes exhibited adsorption-photocatalytic activity towards a mixture of MO and CIP under visible-light irradiation. Last but not the least, the Eu-TiO2/PVDF membranes exhibited excellent recyclability and reusability, opening the avenue for a possible use of these membranes in sewage-treatment plants.

2.
Adv Mater ; 33(44): e2104187, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510560

ABSTRACT

A fatal weakness in flexible electronics is the mechanical fracture that occurs during repetitive fatigue deformation; thus, controlling the crack development of the conductive layer is of prime importance and has remained a great challenge until now. Herein, this issue is tackled by utilizing an amyloid/polysaccharide molecular composite as an interfacial binder. Sodium alginate (SA) can take part in amyloid-like aggregation of the lysozyme, leading to the facile synthesis of a 2D protein/saccharide hybrid nanofilm over an ultralarge area (e.g., >400 cm2 ). The introduction of SA into amyloid-like aggregates significantly enhances the mechanical strength of the hybrid nanofilm, which, with the help of amyloid-mediated interfacial adhesion, effectively diminishes the microcracks in the hybrid nanofilm coating after repetitive bending or stretching. The microcrack-free hybrid nanofilm then shows high interfacial activity to induce electroless deposition of metal in a Kelvin model on a substrate, which noticeably suppresses the formation of microcracks and consequent conductivity loss during the bending and stretching of the metal-coated flexible substrates. This work underlines the significance of amyloid/polysaccharide nanocomposites in the design of interfacial binders for reliable flexible electronic devices and represents an important contribution to mimicking amyloid and polysaccharide-based adhesive cements created by organisms.


Subject(s)
Protein Aggregates
3.
Small ; 16(18): e2000043, 2020 05.
Article in English | MEDLINE | ID: mdl-32307812

ABSTRACT

Long-distance wireless actuation indicates precise remote control over materials, sensors, and devices that are widely utilized in biomedical, defence, disaster relief, deep ocean, and outer space applications to replace human work. Unlike radio frequency (RF) control, which has low tolerance toward electromagnetic interference (EMI), light control represents a promising method to overcome EMI. Nonetheless, long-distance light-controlled wireless actuation able to compete with RF control has not been achieved until now due to the lack of highly light-sensitive actuator designs. Here, it is demonstrate that amyloid-like protein aggregates can organize photomodule single-layer reduced graphene oxide (rGO) into a well-defined multilayer stack to display long-distance photoactuation. The amyloid-like proteinaceous component docks the rGO layers together to form a hybrid film, which can reliably adhere onto various material surfaces with robust interfacial adhesion. The sensitive photothermal effect and a fast bending in 1 s to switch a circuit are achieved after forming the film on a plastic substrate and irradiating the bilayer film with a blue laser from 100 m away. A photoactuation distance of 50 km can be further extrapolated based on a commercial high-power laser. This study reveals the great potential of amyloid-like aggregates in remote light control of robots and devices.


Subject(s)
Graphite/chemistry , Lasers , Light , Proteins/chemistry , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...