Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 658: 846-855, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157609

ABSTRACT

Bimetallic phosphides exhibit superior electrocatalytic activities and synergistic effects that make them ideal electrocatalysts for the urea oxidation reaction (UOR). Herein, P, N-codoped carbon-encapsulated cobalt/nickel phosphides derived from NiCo-MOF-74 (NiCoP@PNC) and anchored on P-doped carbonized wood fiber (PCWF) for UOR were prepared through synchronous carbonization and phosphorization. By benefiting from the synergistic effect of structural and electronic modulation, NiCoP@PNC/PCWF exhibits excellent UOR electrocatalytic performance under alkaline conditions, achieving a current density of 50 mA cm-2 with a potential of only 1.34 V (vs reversible hydrogen electrode, RHE) and continuous operation for more than 72 h. In addition, for the overall urea splitting, an electrolyzer using UOR replaced OER, which required only 1.50 V to achieve a current density of 50 mA cm-2 with excellent stability, 230 mV less than that required for the HER||OER system. In-depth theoretical analysis further proves that the strong synergistic effect between Co and Ni optimizes electronic structures, yielding excellent UOR properties. The synergistic strategy of structural and electrical modulation provides broad prospects for the design and synthesis of excellent UOR electrocatalysts for energy-saving hydrogen production by using renewable resources.

2.
New Phytol ; 236(5): 1824-1837, 2022 12.
Article in English | MEDLINE | ID: mdl-36089828

ABSTRACT

Light regulates the subcellular localization of plant photoreceptors, a key step in light signaling. Ultraviolet-B radiation (UV-B) induces the plant photoreceptor UV RESISTANCE LOCUS 8 (UVR8) nuclear accumulation, where it regulates photomorphogenesis. However, the molecular mechanism for the UV-B-regulated UVR8 nuclear localization dynamics is unknown. With fluorescence recovery after photobleaching (FRAP), cell fractionation followed by immunoblotting and co-immunoprecipitation (Co-IP) assays we tested the function of UVR8-interacting proteins including CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 in the regulation of UVR8 nuclear dynamics in Arabidopsis thaliana. We showed that UV-B-induced rapid UVR8 nuclear translocation is independent of COP1, which previously was shown to be required for UV-B-induced UVR8 nuclear accumulation. Instead, we provide evidence that the UV-B-induced UVR8 homodimer-to-monomer photo-switch and the concurrent size reduction of UVR8 enables its monomer nuclear translocation, most likely via free diffusion. Nuclear COP1 interacts with UV-B-activated UVR8 monomer, thereby promoting UVR8 nuclear retention. Conversely, RUP1and RUP2, whose expressions are induced by UV-B, inhibit UVR8 nuclear retention via attenuating the UVR8-COP1 interaction, allowing UVR8 to exit the nucleus. Collectively, our data suggest that UV-B-induced monomerization of UVR8 promotes its nuclear translocation via free diffusion. In the nucleus, COP1 binding promotes UVR8 monomer nuclear retention, which is counterbalanced by the major negative regulators RUP1 and RUP2.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Signal Transduction , Arabidopsis/metabolism , Photoreceptors, Plant/metabolism , Ultraviolet Rays , Ubiquitin-Protein Ligases/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...