Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 196: 113686, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34628262

ABSTRACT

Artificial peroxisome is of critical importance to supersede natural peroxisome in fabricating protocell system and disease treatment. Nevertheless, developing feasible artificial peroxisome with various stable functions remains a monumental challenge. Nanozyme with multiple enzyme-like activities can mimic natural enzymes in peroxisome, which make it a prospective candidate for artificial peroxisome design. Herein, we prepared a nanozyme with multiple peroxisomal-like activities - Pd nanoparticles functionalized nitrogen-doped porous carbon-reduced graphene oxide (PdNPs/N-PC-rGO). Due to its sandwich-like structure, the incorporation of N heteroatoms and the synergistic effect between PdNPs and N-PC-rGO bi-support, the PdNPs/N-PC-rGO exhibited triple peroxisomal-like activities including oxidase (OXD), peroxidase (POD) and catalase (CAT), leading it a promising alternative for artificial peroxisome exploration. Furthermore, the PdNPs/N-PC-rGO showed high electrocatalytic activity, which could be employed for the detection of electrochemical active substances reduced glutathione (GSH). The PdNPs/N-PC-rGO modified electrode displayed a wide concentration range from 70 nM to 1500 µM, with a very low detection limit of 9.8 nM (S/N = 3). Therefore, PdNPs/N-PC-rGO was a promising nanozyme for various biotechnological applications such as artificial organelles, biosensing, cytoprotection, disease diagnosis and treatment.


Subject(s)
Biosensing Techniques , Graphite , Catalysis , Electrodes , Peroxisomes , Prospective Studies
2.
J Control Release ; 340: 149-167, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34699871

ABSTRACT

Immunotherapy is becoming a new standard of care for multiple cancers, while several limitations are impending its further clinical success. Immunotherapeutic agents often have inappropriate pharmacokinetics on their own and/or exhibit limited specificity to tumor cells, leading to severe immuno-related adverse effects and limited efficacy. Suitable formulating strategies that confer prolonged contact with or efficient proliferation in tumors while reducing exposure to normal tissues are highly worthy to explore. With the assistance of biomaterial carriers, targeted therapy can be achieved artificially by implanting or injecting drug depots into desired sites, about which the wisdoms in literature have been rich. The relevant results have suggested a "local but systemic" effect, that is, local replenishment of immune modulators achieves a high treatment efficacy that also governs distant metastases, thereby building another rationale for localized delivery. Particularly, implantable scaffolds have been further engineered to recruit disseminated tumor cells with an efficiency high enough to reduce tumor burdens at typical metastatic organs, and simultaneously provide diagnostic signals. This review introduces recent advances in this emerging area along with a perspective on the opportunities and challenges in the way to clinical application.


Subject(s)
Immunotherapy , Neoplasms , Biocompatible Materials , Humans , Immunologic Factors , Neoplasms/therapy
3.
Sci Adv ; 6(22): eaba6714, 2020 May.
Article in English | MEDLINE | ID: mdl-32524003

ABSTRACT

Two-dimensional van der Waals heterojunctions (2D-vdWHs) stacked from atomically thick 2D materials are predicted to be a diverse class of electronic materials with unique electronic properties. These properties can be further tuned by sandwiching monolayers of planar organic molecules between 2D materials to form molecular 2D-vdWHs (M-2D-vdWHs), in which electricity flows in a cross-plane way from one 2D layer to the other via a single molecular layer. Using a newly developed cross-plane break junction technique, combined with density functional theory calculations, we show that M-2D-vdWHs can be created and that cross-plane charge transport can be tuned by incorporating guest molecules. The M-2D-vdWHs exhibit distinct cross-plane charge transport signatures, which differ from those of molecules undergoing in-plane charge transport.

4.
Nat Commun ; 10(1): 1748, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988310

ABSTRACT

Full-carbon electronics at the scale of several angstroms is an expeimental challenge, which could be overcome by exploiting the versatility of carbon allotropes. Here, we investigate charge transport through graphene/single-fullerene/graphene hybrid junctions using a single-molecule manipulation technique. Such sub-nanoscale electronic junctions can be tuned by band gap engineering as exemplified by various pristine fullerenes such as C60, C70, C76 and C90. In addition, we demonstrate further control of charge transport by breaking the conjugation of their π systems which lowers their conductance, and via heteroatom doping of fullerene, which introduces transport resonances and increase their conductance. Supported by our combined density functional theory (DFT) calculations, a promising future of tunable full-carbon electronics based on numerous sub-nanoscale fullerenes in the large family of carbon allotropes is anticipated.

5.
J Am Chem Soc ; 139(41): 14344-14347, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28872866

ABSTRACT

To explore the charge transport through metalla-aromatics building blocks, three metallacycles complexes were synthesized, and their single-molecule conductances were characterized by using mechanically controllable break junction technique. It is found that the conductance of the metallacycles junction with phosphonium group is more than 1 order of magnitude higher than that without phosphonium group. X-ray diffraction and UV-vis absorption spectroscopy suggested that the attached phosphonium group makes metallacycles more delocalized, which shortened the preferred charge transport pathway and significantly enhanced the single-molecule conductance. This work revealed that the delocalization of metalla-aromatics could be used to switch the charge transport pathway of single-molecule junctions and thus tune the charge transport abilities significantly.

SELECTION OF CITATIONS
SEARCH DETAIL
...