Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38651804

ABSTRACT

The sinking of alkali cations in superfluid 4He nanodroplets is investigated theoretically using liquid 4He time-dependent density functional theory at zero temperature. The simulations illustrate the dynamics of the buildup of the first solvation shell around the ions. The number of helium atoms in this shell is found to linearly increase with time during the first stages of the dynamics. This points to a Poissonian capture process, as concluded in the work of Albrechtsen et al. on the primary steps of Na+ solvation in helium droplets [Albrechtsen et al., Nature 623, 319 (2023)]. The energy dissipation rate by helium atom ejection is found to be quite similar between all alkalis, the main difference being a larger energy dissipated per atom for the lighter alkalis at the beginning of the dynamics. In addition, the number of helium atoms in the first solvation shell is found to be lower at the end of the dynamics than at equilibrium for both Li+ and Na+, pointing to a kinetic rather than thermodynamical control of the snowball size for small and strongly attractive ions.

2.
Nature ; 623(7986): 319-323, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938709

ABSTRACT

Solvation is a ubiquitous phenomenon in the natural sciences. At the macroscopic level, it is well understood through thermodynamics and chemical reaction kinetics1,2. At the atomic level, the primary steps of solvation are the attraction and binding of individual molecules or atoms of a solvent to molecules or ions of a solute1. These steps have, however, never been observed in real time. Here we instantly create a single sodium ion at the surface of a liquid helium nanodroplet3,4, and measure the number of solvent atoms that successively attach to the ion as a function of time. We found that the binding dynamics of the first five helium atoms is well described by a Poissonian process with a binding rate of 2.0 atoms per picosecond. This rate is consistent with time-dependent density-functional-theory simulations of the solvation process. Furthermore, our measurements enable an estimate of the energy removed from the region around the sodium ion as a function of time, revealing that half of the total solvation energy is dissipated after four picoseconds. Our experimental method opens possibilities for benchmarking theoretical models of ion solvation and for time-resolved measurements of cation-molecule complex formation.

3.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37602801

ABSTRACT

We address the collision of two superfluid 4He droplets at non-zero initial relative velocities and impact parameters within the framework of liquid 4He time-dependent density functional theory at zero temperature. Despite the small size of these droplets (1000 He atoms in the merged droplet) imposed by computational limitations, we have found that quantized vortices may be readily nucleated for reasonable collision parameters. At variance with head-on collisions, where only vortex rings are produced, collisions with a non-zero impact parameter produce linear vortices that are nucleated at indentations appearing on the surface of the deformed merged droplet. Whereas for equal-size droplets, vortices are produced in pairs, an odd number of vortices can appear when the colliding droplet sizes are different. In all cases, vortices coexist with surface capillary waves. The possibility for collisions to be at the origin of vortex nucleation in experiments involving very large droplets is discussed. An additional surprising result is the observation of the drops coalescence even for grazing and distal collisions at relative velocities as high as 80 and 40 m/s, respectively, induced by the long-range van der Waals attraction between the droplets.

4.
Phys Chem Chem Phys ; 25(25): 16699-16706, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37317779

ABSTRACT

Experimental and theoretical work has delivered evidence of the helium nanodroplet-mediated synthesis and soft-landing of metal nanoparticles, nanowires, clusters, and single atoms on solid supports. Recent experimental advances have allowed the formation of charged metal clusters into multiply charged helium nanodroplets. The impact of the charge of immersed metal species in helium nanodroplet-mediated surface deposition is proved by considering silver atoms and cations at zero-temperature graphene as the support. By combining high-level ab initio intermolecular interaction theory with a full quantum description of the superfluid helium nanodroplet motion, evidence is presented that the fundamental mechanism of soft-deposition is preserved in spite of the much stronger interaction of charged species with surfaces, with high-density fluctuations in the helium droplet playing an essential role in braking them. Corroboration is also presented that the soft-landing becomes favored as the helium nanodroplet size increases.

5.
6.
J Chem Phys ; 158(14): 144306, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37061465

ABSTRACT

The instability of a cryogenic 4He jet exiting through a small nozzle into vacuum leads to the formation of 4He drops, which are considered ideal matrices for spectroscopic studies of embedded atoms and molecules. Here, we present a He-density functional theory (DFT) description of droplet formation resulting from jet breaking and contraction of superfluid 4He filaments. Whereas the fragmentation of long jets closely follows the predictions of linear theory for inviscid fluids, leading to droplet trains interspersed with smaller satellite droplets, the contraction of filaments with an aspect ratio larger than a threshold value leads to the nucleation of vortex rings, which hinder their breakup into droplets.

7.
J Chem Phys ; 157(1): 014106, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35803817

ABSTRACT

The clustering, collision, and relaxation dynamics of pristine and doped helium nanodroplets is theoretically investigated in cases of pickup and clustering of heliophilic argon, collision of heliophobic cesium atoms, and coalescence of two droplets brought into contact by their mutual long-range van der Waals interaction. Three approaches are used and compared with each other. The He time-dependent density functional theory method considers the droplet as a continuous medium and accounts for its superfluid character. The ring-polymer molecular dynamics method uses a path-integral description of nuclear motion and incorporates zero-point delocalization while bosonic exchange effects are ignored. Finally, the zero-point averaged dynamics approach is a mixed quantum-classical method in which quantum delocalization is described by attaching a frozen wavefunction to each He atom, equivalent to classical dynamics with effective interaction potentials. All three methods predict that the growth of argon clusters is significantly hindered by the helium host droplet due to the impeding shell structure around the dopants and kinematic effects freezing the growing cluster in metastable configurations. The effects of superfluidity are qualitatively manifested by different collision dynamics of the heliophilic atom at high velocities, as well as quadrupole oscillations that are not seen with particle-based methods, for droplets experiencing a collision with cesium atoms or merging with each other.

8.
J Phys Chem A ; 125(41): 9048-9059, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34619968

ABSTRACT

We present an experimental study of the dynamics following the photoexcitation and subsequent photoionization of single Cs atoms on the surface of helium nanodroplets. The dynamics of excited Cs atom desorption and readsorption as well as CsHe exciplex formation are measured by using femtosecond pump-probe velocity map imaging spectroscopy and ion time-of-flight spectrometry. The time scales for the desorption of excited Cs atoms off helium nanodroplets as well as the time scales for CsHe exciplex formation are experimentally determined for the 6p states of Cs. For the 6p 2Π1/2 state, our results confirm that the excited Cs atoms only desorb from the nanodroplet when the excitation wavenumber is blue-shifted from the 6p 2Π1/2 ← 6s 2Σ1/2 resonance. Our results suggest that the dynamics following excitation to the 6p 2Π3/2 state can be described by an evaporation-like desorption mechanism, whereas the dynamics arising from excitation to the 6p 2Σ1/2 state is indicative for a more impulsive desorption process. Furthermore, our results suggest a helium-induced spin-orbit relaxation from the 6p 2Σ1/2 state to the 6p 2Π1/2 state. Our findings largely agree with the results of time-dependent 4He density functional theory (DFT) simulations published earlier [Eur. Phys. J. D 2019, 73, 94].

9.
Phys Chem Chem Phys ; 23(28): 15138-15149, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34259254

ABSTRACT

The relaxation dynamics of superexcited superfluid He nanodroplets is thoroughly investigated by means of extreme-ultraviolet (XUV) femtosecond electron and ion spectroscopy complemented by time-dependent density functional theory (TDDFT). Three main paths leading to the emission of electrons and ions are identified: droplet autoionization, pump-probe photoionization, and autoionization induced by re-excitation of droplets relaxing into levels below the droplet ionization threshold. The most abundant product ions are He2+, generated by droplet autoionization and by photoionization of droplet-bound excited He atoms. He+ appear with some pump-probe delay as a result of the ejection He atoms in their lowest excited states from the droplets. The state-resolved time-dependent photoelectron spectra reveal that intermediate excited states of the droplets are populated in the course of the relaxation, terminating in the lowest-lying metastable singlet and triplet He atomic states. The slightly faster relaxation of the triplet state compared to the singlet state is in agreement with the simulation showing faster formation of a bubble around a He atom in the triplet state.

10.
Phys Rev Lett ; 124(21): 215301, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32530661

ABSTRACT

The angular momentum of rotating superfluid droplets originates from quantized vortices and capillary waves, the interplay between which remains to be uncovered. Here, the rotation of isolated submicrometer superfluid ^{4}He droplets is studied by ultrafast x-ray diffraction using a free electron laser. The diffraction patterns provide simultaneous access to the morphology of the droplets and the vortex arrays they host. In capsule-shaped droplets, vortices form a distorted triangular lattice, whereas they arrange along elliptical contours in ellipsoidal droplets. The combined action of vortices and capillary waves results in droplet shapes close to those of classical droplets rotating with the same angular velocity. The findings are corroborated by density functional theory calculations describing the velocity fields and shape deformations of a rotating superfluid cylinder.

11.
J Chem Phys ; 152(18): 184111, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32414245

ABSTRACT

Motivated by recent experiments, we study normal-phase rotating 3He droplets within density functional theory in a semi-classical approach. The sequence of rotating droplet shapes as a function of angular momentum is found to agree with that of rotating classical droplets, evolving from axisymmetric oblate to triaxial prolate to two-lobed shapes as the angular momentum of the droplet increases. Our results, which are obtained for droplets of nanoscopic size, are rescaled to the mesoscopic size characterizing ongoing experimental measurements, allowing for a direct comparison of shapes. The stability curve in the angular velocity-angular momentum plane shows small deviations from the classical rotating drop model predictions, whose magnitude increases with angular momentum. We attribute these deviations to effects not included in the simplified classical model description of a rotating fluid held together by surface tension, i.e., to surface diffuseness, curvature, and finite compressibility, and to quantum effects associated with deformation of the 3He Fermi surface. The influence of all these effects is expected to diminish as the droplet size increases, making the classical rotating droplet model a quite accurate representation of 3He rotation.

12.
J Chem Phys ; 152(19): 194109, 2020 May 21.
Article in English | MEDLINE | ID: mdl-33687233

ABSTRACT

Light absorption or fluorescence excitation spectroscopy of alkali atoms attached to 4He droplets is investigated as a possible way for detecting the presence of vortices. To this end, we have calculated the equilibrium configuration and energetics of alkali atoms attached to a 4He1000 droplet hosting a vortex line using 4He density functional theory. We use them to study how the dipole absorption spectrum of the alkali atom is modified when the impurity is attached to a vortex line. Spectra are found to be blue-shifted (higher frequencies) and broadened compared to vortex-free droplets because the dimple in which the alkali atom sits at the intersection of the vortex line and the droplet surface is deeper. This effect is smaller for lighter alkali atoms and all the more so when using a quantum description since, in this case, they sit further away from the droplet surface on average due to their zero-point motion. Spectral modifications due to the presence of a vortex line are minor for np ← ns excitation and therefore insufficient for vortex detection. In the case of higher n'p ← ns or n's ← ns (n' > n) excitations, the shifts are larger as the excited state orbital is more extended and therefore more sensitive to changes in the surrounding helium density.

13.
Phys Chem Chem Phys ; 21(31): 17423-17432, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31359015

ABSTRACT

The capture of multiple impurities by 4He droplets is investigated using real time dynamics within the density functional approach applied to liquid helium. We study the case of two or six Ar atoms colliding with a 4He5000 droplet either in its ground state or hosting a six-vortex array. Depending on initial kinematic conditions, two different Ar structures are found: either a compact, gas-phase like cluster, or a loosely bound metastable cluster with helium density caged inside. In the presence of the vortex array, the argon atoms are deflected by the superfluid flow, tending to orbit around the vortex cores. The Ar atoms end up being trapped together in a loosely bound structure attached to the central vortex core.

14.
Phys Chem Chem Phys ; 21(7): 3626-3636, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30379151

ABSTRACT

We study the photodissociation of the potassium atom from a superfluid helium nanodroplet upon 5s 2S or 4p 2P excitation using the time-dependent helium density functional method (He-TDDFT). The importance of quantum effects is assessed by comparing the absorption spectrum obtained for a classical or a quantum description of the K atom. In the case of the 5s 2S ← 4s 2S excitation the difference is rather large, and we use a quantum description for the ensuing direct dissociation dynamics. In the case of the 4p 2P ← 4s 2S absorption spectrum, the difference is much smaller, hence a classical description of K is used to describe 4p 2P excitation dynamics. Excitation to the 4p 2Σ1/2 state leads to the direct dissociation of the K atom, while the 4p 2Π3/2 state initially leads to the formation of an exciplex and the 4p 2Π1/2 state to a bouncing atom above the droplet surface. Remarkably, electronic relaxation can be observed for the latter two states, leading to spin-orbit relaxation and the binding of the initially departing one-atom excimer as a ring excimer for the 2P3/2 state and to the formation of a bound, ring excimer for the 2Π1/2 state.

15.
J Chem Phys ; 149(12): 124301, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30278652

ABSTRACT

We simulate the non-adiabatic laser alignment of the weakly bound 4He-CH3I complex based on a quantum mechanical wave packet calculation for a model He-CH3I interaction potential. Two different regimes are found depending on the laser intensity. At intensities typical of non-adiabatic alignment experiments, the rotational dynamics resembles that of the isolated molecule. This is attributed to the fact that after the initial prompt alignment peak the complex rapidly dissociates. The subsequent revival pattern is due to the free rotation of the molecule detached from the helium atom. It is superimposed to a flat background corresponding to ∼20% of the wave packet which remains bound, containing lower rotational excitation. At lower intensities, dissociation is avoided but the rotational excitation is not high enough to provide an efficient alignment and a broad non-regular structure is observed. Besides, the interaction of the He atom with the molecule quenches any possible alignment. These interpretations are based on the calculation of different observables related to the rotational motion. We compare our findings with recent experimental and theoretical results of non-adiabatic alignment of linear molecules solvated in helium nanodroplets or weakly interacting with one helium atom.

16.
J Chem Phys ; 148(14): 144302, 2018 Apr 14.
Article in English | MEDLINE | ID: mdl-29655323

ABSTRACT

The possibility for helium-induced electronic transitions in a photo-excited atom is investigated using Ba+ excited to the 6p 2P state as a prototypical example. A diabatization scheme has been designed to obtain the necessary potential energy surfaces and couplings for complexes of Ba+ with an arbitrary number of helium atoms. It involves computing new He-Ba+ electronic wave functions and expanding them in determinants of the non-interacting complex. The 6p 2P ← 6s 2S photodissociation spectrum of He⋯Ba+ calculated with this model shows very weak coupling for a single He atom. However, several electronic relaxation mechanisms are identified, which could potentially explain the expulsion of barium ions from helium nanodroplets observed experimentally upon Ba+ photoexcitation. For instance, an avoided crossing in the ring-shaped He7Ba+ structure is shown to provide an efficient pathway for fine structure relaxation. Symmetry breaking by either helium density fluctuations or vibrations can also induce efficient relaxation in these systems, e.g., bending vibrations in the linear He2Ba+ excimer. The identified relaxation mechanisms can provide insight into helium-induced non-adiabatic transitions observed in other systems.

17.
Phys Chem Chem Phys ; 20(14): 9309-9320, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29564442

ABSTRACT

Doped He nanodroplets are ideal model systems to study the dynamics of elementary photophysical processes in heterogeneous nanosystems. Here we present a combined experimental and theoretical investigation of the formation of free RbHe exciplex molecules from laser-excited Rb-doped He nanodroplets. Upon excitation of a droplet-bound Rb atom to the 5p3/22Π3/2-state, a stable RbHe exciplex forms within about 20 ps. Only due to 2Π3/2 → 2Π1/2 spin-relaxation does the RbHe exciplex detach from the He droplet surface with a half life of about 700 ps, given by the spin-relaxation time and the coupling of spin and translational degrees of freedom.

18.
Phys Chem Chem Phys ; 19(36): 24805-24818, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28868543

ABSTRACT

We present a computational study, based on time-dependent Density Functional theory, of the real-time interaction and trapping of Ar and Xe atoms in superfluid 4He nanodroplets either pure or hosting quantized vortex lines. We investigate the phase-space trajectories of the impurities for different initial conditions and describe in detail the complex dynamics of the droplets during the capture of the impurities. We show that the interaction of the incoming atom with the vortex core induces large bending and twisting excitations of the vortex core lines, including the generation of helical Kelvin waves propagating along the vortex core. We have also calculated the stationary configurations of a 4He droplet hosting a 6-vortex array whose cores are filled with Ar atoms. As observed in recent experiments, we find that doping adds substantial rigidity to the system, such that the doped vortex array remains stable, even at low values of the angular velocities where the undoped vortices would otherwise be pushed towards the droplet surface and be expelled.

19.
J Phys Chem Lett ; 8(1): 307-312, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27996261

ABSTRACT

The real-time dynamics of excited alkali metal atoms (Rb) attached to quantum fluid He nanodroplets is investigated using femtosecond imaging spectroscopy and time-dependent density functional theory. We disentangle the competing dynamics of desorption of excited Rb atoms off the He droplet surface and solvation inside the droplet interior as the Rb atom is ionized. For Rb excited to the 5p and 6p states, desorption occurs on starkly differing time scales (∼100 versus ∼1 ps, respectively). The comparison between theory and experiment indicates that desorption proceeds either impulsively (6p) or in a transition regime between impulsive dissociation and complex desorption (5p).

20.
J Chem Phys ; 144(9): 094302, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26957164

ABSTRACT

We present a joint experimental and theoretical study on the desolvation of Ba(+) cations in (4)He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba(+) cations and Ba(+)Hen exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba(+) Hen exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba(+). In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba(+) cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba(+) cations or exciplexes, even when relaxation pathways to lower lying states are included.

SELECTION OF CITATIONS
SEARCH DETAIL
...