Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(32): e2304780, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37750254

ABSTRACT

The development of hydrogel-based underwater electronics has gained significant attention due to their flexibility and portability compared to conventional rigid devices. However, common hydrogels face challenges such as swelling and poor underwater adhesion, limiting their practicality in water environments. Here, a water-induced phase separation strategy to fabricate hydrogels with enhanced anti-swelling properties and underwater adhesion is presented. By leveraging the contrasting affinity of different polymer chains to water, a phase-separated structure with rich hydrophobic and dilute hydrophilic polymer phases is achieved. This dual-phase structure, meticulously characterized from the macroscopic to the nanoscale, confers the hydrogel network with augmented retractive elastic forces and facilitates efficient water drainage at the gel-substrate interface. As a result, the hydrogel exhibits remarkable swelling resistance and long-lasting adhesion to diverse substrates. Additionally, the integration of carboxylic multiwalled carbon nanotubes into the hydrogel system preserves its anti-swelling and adhesion properties while imparting superior conductivity. The conductive phase-separated hydrogel exhibited great potential in diverse underwater applications, including sensing, communication, and energy harvesting. This study elucidates a facile strategy for designing anti-swelling underwater adhesives by leveraging the ambient solvent effect, which is expected to offer some insights for the development of next-generation adhesive soft materials tailored for aqueous environments.

2.
ACS Appl Mater Interfaces ; 14(45): 51318-51328, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36323531

ABSTRACT

Salt ions are multifunctional in living beings, in contrast to their limited efficiency in abiotic materials. Achieving the versatility of salt ions in synthetic materials is promising yet demanding. Here, we report that multivalent metallic ions can act multiple crucial roles in a polyacrylamide/sodium alginate (PAAm/SA) composite hydrogel system, inducing a quadruple effect that toughens and functionalizes the originally weak gel. Fixation of anisotropic structures (effect I), mechanical enhancement (effect II), conductivity improvement (effect III), as well as antifreezing and moisture retention properties (effect IV) simultaneously emerge in the gel, all of which are enabled by the ion effect. The resulting tough hydrogels exhibit excellent comprehensive properties that rival existing state-of-the-art hydrogels, promising a wide range of potential applications. As proof-of-concept demonstrations, extremely durable hydrogel-based soft electronic devices are developed, which operate stably even in harsh environments. We also prove that the ion effect can be induced by other multivalent metallic ions. This work highlights the versatility of salt ions in nonliving materials, providing a simple but enlightening idea for the development of all-around soft materials.

3.
Small ; 18(52): e2205359, 2022 12.
Article in English | MEDLINE | ID: mdl-36333111

ABSTRACT

The rapid progress of information technology is accompanied by plenty of information embezzlement and forgery, but developing advanced encryption technologies to ensure information security remains challenging. Phase separation commonly leads to a dramatic change in the transmittance of hydrophilic polymer networks, which is a potential method for information security but is often neglected. Here, taking the polyacrylamide (PAAm) hydrogel system as a typical example, facilely adjustable information encryption and decryption via its regulable phase separation process in ethanol/water mixed solvent, are reported. By controlling the osmotic pressure of the external and internal environment, it is demonstrated that the diffusion coefficient during deswelling and reswelling, as well as the corresponding change of transmittance of the gel, can be well controlled. Relatively high osmotic pressure leads to rapid phase separation of the initial gel but slow phase remixing of the phase-separated gel, opening the opportunity of applying the gel as a reversible information encryption device. As proof-of-concept demonstrations, several stable and reversible information encryption and decryption systems by making use of the phase separation process of the gels are designed, which are expected to inspire the development of next-generation soft devices for information technology.


Subject(s)
Hydrogels , Water , Solvents , Osmotic Pressure , Ethanol
4.
Carbohydr Polym ; 298: 120128, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36241329

ABSTRACT

Common hydrogels containing abundant water are insulating materials and lose stretchability easily below the freezing point of water, holding limited potential in emerging applications such as wearable soft devices. The introduction of compatible biomass-derived materials into hydrogel systems could be a potential solution that simultaneously enables anti-freezing ability, mechanical enhancement, and antibacterial properties. Based on such a hypothesis, here we report the facile development of biocompatible hydrogels that are capable of maintaining satisfying mechanical properties and electrical conductivity well below zero degrees centigrade. The strategy is to reinforce neat polyacrylamide (PAAm) hydrogels with biomass-derived cellulose nanocrystal (CNC) and phytic acid (PA), transforming the originally weak, insulating hydrogels into tough, highly conductive ones. Anti-freezing and antibacterial properties also emerge in the reinforced hydrogels, enabling them to work as efficient wearable sensors below zero degrees centigrade. Considering that numerous polymer hydrogel systems are compatible with CNC and PA, we believe that this simple biomass-based strategy can work universally to enhance and functionalize various weak and insulating hydrogels that are traditionally susceptible to frost and bacteria.


Subject(s)
Nanoparticles , Wearable Electronic Devices , Anti-Bacterial Agents/pharmacology , Cellulose , Electric Conductivity , Hydrogels/chemistry , Phytic Acid , Water
5.
ACS Appl Mater Interfaces ; 14(13): 15641-15652, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35317550

ABSTRACT

Developing flexible energy storage devices with the ability to retain capacitance under extreme deformation is promising but remains challenging. Here, we report the development of a durable supercapacitor with remarkable capacitance retention under mechanical deformation by utilizing a physical double-network (DN) hydrogel as an electrolyte. The first network is hydrophobically associating polyacrylamide cross-linked by nanoparticles, and the second network is Zn2+ cross-linked alginate. Through soaking such a DN hydrogel into a high concentration of ZnSO4 solution, a highly deformable electrolyte with good conductivity is fabricated, which also shows adhesion to diverse surfaces. Directly attaching the hydrogel electrolyte to two pieces of an active carbon cloth facilely produces a flexible supercapacitor with a high specific capacitance and theoretical energy density. Remarkable capacitance retention under tension, compression, and bending is observed for the supercapacitor, which can also maintain above 87% of the initial capacitance after 4000 charge-discharge cycles. This study provides a simple way to fabricate hydrogel electrolytes for deformable yet durable supercapacitors, which is expected to inspire the development of next-generation flexible energy storage devices.

6.
ACS Omega ; 4(15): 16551-16563, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31616835

ABSTRACT

Polymeric nanocarriers have been extensively used in medicinal applications for drug delivery. However, intravenous nanocarriers circulating in the blood will be rapidly cleared from the mononuclear macrophage system. The surface physicochemical characterizations of nanocarriers are the primary factors to determine their fate in vivo, such as evading the reticuloendothelial system, exhibiting long blood circulation times, and accumulating in the targeted site. In this work, we develop a series of polyurethane micelles containing segments of an anionic tripeptide, hydrophilic mPEG, and disulfide bonds. It is found that the long hydrophilic mPEG can shield the micellar surface and have a synergistic effect with the negatively charged tripeptide to minimize macrophage phagocytosis. Meanwhile, the disulfide bond can rapidly respond to the intracellular reduction environment, leading to the acceleration of drug release and improvement of the therapeutic effect. Our results verify that these anionic polyurethane micelles hold great potential in the development of the stealth immune system and controllable intracellular drug transporters.

SELECTION OF CITATIONS
SEARCH DETAIL
...