Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 14(10): 7668-73, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942845

ABSTRACT

An anode-supported flat-tubular solid oxide fuel cell is an advanced cell design, which offers many advantages including a high volumetric power density, a minimized sealing area and a high resistance to thermal cycling. Infiltration of nano-sized noble metal catalysts into a porous cathode is known to be an effective method to improve cathode performances at reduced temperatures, but the cathode stability is of potential concern. This study addresses the performance and durability of anode-supported flat-tubular solid oxide fuel cells with Ag-infiltrated cathodes. Uniformly dispersed Ag nanoparticles on the cathode are formed via a wet infiltration technique combined with subsequent heat-treatment. Although the Ag infiltration results in improved cell performance, the durability tests indicate that the cell performance degrades over time and that the degradation rate increases with increasing Ag loading in the cathode. The observed performance degradation is mainly attributed to formation of large-scale Ag agglomerates. A strategy based on an inter-dispersed composite of Ag and CeO2 nanoparticles is proposed to mitigate the performance degradation.


Subject(s)
Cerium/chemistry , Electric Power Supplies , Silver/chemistry , Electrodes , Metal Nanoparticles/chemistry , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL